Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Botany (Three Years- Six Semesters Bachelor's Degree Programme)

Syllabus for : GOEC : ELEMENTARY FORENSIC SCIENCE (106403)

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course Code	Course Name	Credits	Teaching Hours	Exam Duration	Max Marks
4.5	l	106403	ELEMENTARY FORENSIC SCIENCE	2	30	2 Hrs	30

Course	1. To Learn about significance of Forensic Sciences.							
Objectives:	2. To learn about applications of forensic science.							
Course	As per Blooms Taxonomy (4 to 6)							
Outcomes:	CO-1: Students will be able to Recognize importance of Forensic science and it methodology.							
	CO-2: Students will be able to classify criminal record by fingerprints.							
	CO-3: Students will apply knowledge to understand Criminal psychol	ogy						
	CO-4: Students will be able to categorize types of evidences at crime	location						
	CO-5: students will be able to plan strategies for using chromatographic and spectroscopic							
	techniques in processing crime scene evidence.							
	CO-6: Students will be able to develop photography and videography for recording the crime							
	scenes.							
Unit System	Contents	Workload	Weightage of Marks	Incorporatio				
		(Hrs)	Allotted	n of Pedagogies				
Unit I	Introduction to Forensic Science	8	8	1 COOBOBICS				
Child I	11 Forensic Science: Definition of Forensic Science. The Role of	Ū	Ū					
	the Forensic Laboratory History and Development of Forensic							
	Science in India Multidisciplinary nature Forensic Technology							
	solving crimes with advanced technology							
	1.2 Forensic Evidences: Concise of Forensic Physical Biological							
	Chemical and Psychological evidences Medico-Legal Cases							
	13 Branches of Forensic Science Forensic intelligence and							
	Interviews.							
	1.4 Laws and Principles of Forensic Science: Law of Exchange							
	(Locard), Law of Individuality, Law of Comparison, Law of							
	Progressive Changes and Law of Probability, Branches of Forensic							
	Science.							
Unit IIO	GENERAL FORENSIC TOOLS	7	7					
	2.1 Schematic analysis of Chemical, Biological and Physical							
	samples, Preliminary and Confirmatory methods of analysis,							
	Colour spot tests in Forensic Biological, Chemical and Physical							
	analysis, Microcrystalline test.							
	2.2 Biometrics in Personal Identification: Introduction, Concepts of							
	Biometric Authentication, Role in person Identification,							
	Techniques and Technologies (Finger Print Technology, Face							
	Recognition, IRIS, Retina Geometry, Hand Geometry, Signature							
	Verification).							
	2.3 Forensic Report: Forensic Expert, Forensic Report, Formats of							
	Forensic Report							
	2.4 Ethics in Forensic Science.							
Unit III	Technological Methods in Forensic Science	8	8					
	3.1 Microscopy : Fundamental principles. Different types of							
	microscopes. Electron microscope. Forensic applications of							
	microscopy.							
	3.2 Chromatographic and spectroscopic evidence: Sample							

	preparation, Chromatographic methods. Fundamental principles						
	and forensic applications of thin layer chromatography gas						
	chromatography and liquid chromatography.						
	3.3 Spectroscopic methods . Fundamental principles and forensic						
	applications of Ultravioletvisible spectroscopy infrared						
	spectroscopy, atomic absorption spectroscopy, atomic emission						
	spectroscopy and mass spectroscopy. X-ray spectrometry.						
	2.4 Electrophenesia fundamental universidas and formation						
	3.4 Electrophoresis – fundamental principles and forensic						
	applications.						
Unit IV	Forensic Dermatoglyphics	7	7				
	4.1 Finger printing: Basics of Eingerprinting Introduction and						
	nistory, Biological basis of fingerprints. Formation of ridges.						
	Fundamental principles of fingerprinting. Types of fingerprints.						
	Fingerprint patterns, Fingerprint characters/minutiae						
	4.2 Latent prints : Constituents of sweat residue, Preservation of						
	developed fingerprints. Digital imaging for fingerprint						
	anhancement						
	4.3 footprints : Importance of footprints. Casting of foot prints,						
	Palm prots Lip prints - collection and examination of lip prints Far						
	prints and their significance						
	prints and their significance.						
	4.4 Forensic photography: Basic principles and applications of						
	photography in forensic science 3D photography Photographic						
	evidence. Videography Crime scene and laboratory photography.						
	4.5 Education and Employment systems of Forensic Science in						
	India, Tapphing Courses and Descerab fields in Ferencia Science						
	India: reaching Courses and Research helds in Forensic Science,						
	Scope and jobs in Forensic Science.						
Defense	1 Nanda D.D. and Tawari D.K. (2001) Farancia Caianaa in India		fan tha t	wants first			
References:	1. Nanua, B.B. and Tewan, R.K. (2001) Forensic science in Inula	: A VISION	for the ty	wenty first			
	century Select Publisher, New Delhi.						
	2 James S.H. and Nordby J.J. (2003) Forensic Science: An i	ntroductio	n to scie	ntific and			
	z. James, S.H. and Noruby, J.J. (2005) Forensic Science. An introduction to scientific and						
	investigative techniques CRC Press,						
	3. Saferstein : Criminalistics (1976) Prentice Hall Inc., USA.						
	4 Deforest Gansellen & Lee Introduction to Criminalistics						
			~	٨			
	5. Sharma, B.R. (1974) Forensic Science in Criminal Investigation a	ind Triais, (Lentral La	w Agency,			
	Allahabad, 1974.						
	6 Hess A K and Weiner J B (1999) Handbook of Forensic Psycholo	gy 2nd Ed	Iohn wiley	1 & sons			
		- · ·		, a sons.			
	7. Menta, M.K (1980) Identification of Thumb Impression & Cross	s Examinati	on of Fin	ger Prints,			
	N.M. Tripathi Pub. Bombay.						
	8 Moonscons (1975) Einger Prints Techniques Chitten Book Co. Phi	ladolphia N	IV				
	o. Moenssens (1973) Thiger Thinks Techniques, Childon book co. Thi		NI 				
	9. D.A. Skoog, D.M. West and F.J. Holler, Fundamentals of Ana	alytical Che	emistry, 6	^{en} Edition,			
	Saunders College Publishing, Fort Worth (1992).						
	10 W/ Kemp Organic Spectroscopy 2rd Edition Macmillan Hamps	hire (1001)					
	TO. W. Kemp, Organic Speciroscopy, Stu Eulion, Machinan, Hamps	<u>-</u> (1991)					
	11. J.W. Robinson, Undergraduate Instrumental Analysis, 5th Edit	ion, Marce	el Dekker,	Inc., New			
	York (1995).						
	12 D.R. Redsicker The Dractical Methodology of Forensis Photos	ranhy and	Edition	CRC Proce			
	12. D.N. NEUSICKET, THE FLACTICAL METHODOLOgy OF FOTENSIC PHOLOG	ιαρπγ, Ζπα	Luition,	CINC FIESS,			
	Boca Raton (2000).						
Model	Short Type (At least 8). Long Type (At least 4) and MCOs for Internal	Assessmer	nt (At least	t 8)			
Questione	whorever applicable as the need of curriculum		,	,			
Questions:							
	Short Type (At least 8):						
	1. Write note on Forensic Evidences						
	2. Write down the tools wood in Crime coord investigation						
	z. write down the tools used in Crime scene investigation.						
	3. write note on significance of Finger printing						
	4. Add note on etics in forensic sciences						
	E Enlist the Dranches of Estancia Colores						
	5. Emist the Branches of Forensic Science,						
	6. Add detailed note Concepts of Biometric Authentication.						
	Long Type (At least 4).						
	1. Evaluin Coope and jobs in Forensia Colones						
	1. Explain scope and jobs in Forensic Science						
	2. What is Forensic photography? Explain Basic principles and applic	ations of p	hotograph	ny in			
	forensic science						
	2. Evalain Diological basis of fingerspirits						
	5. Explain Biological basis of fingerprints						
	4. Describe microscopy techniques use in Forensic science.						

1. Evidence to substantiate that a rape occurred could include:
1. Blood and semen
2. Hairs
3. Fibers
4. All of the above
2. Which of the following types of cells are not contained in plasma?
1. Phagocytes
2. Leukocytes
3. Erythrocytes
4. Platelets
2. The following technique is used to identify the enzymes in blood semples:
(A) Southorn blotting
(R) Electrophorosis
(C) Northern blotting
(D) Northern blotting
4. Optical components in UV spectrometer are made up of:
(A) Glass
(B) Quartz
(C) Sodium-Halide Bromide
(D) Plastic
5. 1. Deviations from Beer's Law fall into which categories?
(A) Real
(B) Instrumental
(C) Chemical
(D) All of the above
6. In GC-IMS, a process in which an inert gas is bubbled through the water is known as
(A) Trapping
(B) Purging
(C) Mixing
(D) Eluting
7. Who is credited for his practical interest in fingerprints as a means of identifying workers to
detect duplicate payment of wages?
(A) E.R. Henry
(B) William Herschel
(C) Francis Galton
(D) Henry Faulds
8. Which of the following method is recommended to develop latent fingerprints on human skin?
(A) Ninhydrin Method
(B) Amido Black Method
(C) Silver-Iodine Plate Transfer Method
(D) DFO Method

Sant Gadge Baba Amravati University, Amravati FACULTY: Science and Technology

Teaching and Learning Scheme (**Bioethics and Biosafety**) for the Three Year UG Degree of Bachelor of Biotechnology(<u>Three Years- Six Semesters Bachelor's Degree Programme</u>)

Course (Theory Curriculum): Bioethics and Biosafety

Each theory paper of Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours as mentioned in the table.

Level	Semester	Course Code	Course Name	Credits	Teaching	Exam	Max
					Hours	Duration	Marks
4.5	Ι	106404	Bioethics and Biosafety	2	30	2 Hrs	30

Course Objectives							
Course Outcomes	CO-1: Students will be taken through what genetically modified organisms are: the existing status of biosafety programmes and safe use of living modified organisms						
	CO-2: Define Biosafety and bioethics in the context	of modern bio	technology,				
	CO-3: Demonstrate good laboratory procedures and practices,						
	CO-4: Describe the standard operating procedures fo	r biotechnolog	gy research an	d			
	assign Biosafety levels,						
	CO-5: Justify the design of confinement facilities at	different Bios	afety levels,				
	CO-6: Discuss the social and ethical issues related to plant and animal biotechnology						
Unit System	Contents	Workloa d Allotted (Hrs)	Weighta ge of Marks Allotted	Incorporati on of Pedagogies			
Unit I	Introduction to Bioethics & Biosafety	8	8				
	1.1 Introduction of Ethics						
	1.2 Bioethics, controversial ethical issues in biological sciences						
	1.3 Ethics involved in GMO, use of plants and animals as genetically modified models						
	1.4 Ethical issues related to environment						
Unit II	Bioethics in Biomedical sciences	7	7				
	2.1 Stem Cells and bioethics	•					
	2.2 Bioethics in clinical trials, studies involving human						
	2.3 Bioethics in IVF, Embryo research, Sex selection						
	2.4 Bioethics in Surrogacy, genetic selection and enhancement, prenatal screening and gene therapy						
Unit III	Introduction to Biosafety	8	8				
	3.1 biosafety issues; Biological Safety Cabinets &						
	their types; Primary Containment for Biohazards;						
	3.2 Biosafety Levels of Specific Microorganisms.						
	Biosatety Guidelines: Biosatety guidelines and regulations (National and International):						
	3.3 GMOs/LMOs- Concerns and Challenges: Role	1					
	of Institutional Biosafety Committees (IBSC),						
	RCGM, GEAC etc. for GMO applications in food and agriculture;						

				-			
Unit IV	Risk Analysis and Guidelines	7	7				
	Analysis; Risk Assessment; Risk management and						
	communication.	-					
	immunoprophylaxis						
	4.3 GMP and GLP	-					
	4.4 Safety and ecological assessment of drugs, vaccines, feeds, foods and food products						
	References						
	 Bioethics Across the Globe by Akira Akabayashi Ethical Guidelines for Biomedical research 						
	on Human Subjects, Indian Council of Medical						
	Research, New Delhi,20003. 3 National Ethical Guidelines for Biomedical and						
	Health research in human participants, ICMR,						
	2017. A Biological Safety: Principles and Practices						
	Edited By; Dawn P. Wooley, Karen B. Byers						
	5. Biosafety in Microbiological and Biomedical						
	Deborah E. Wilson.						
Model	Short Type (At least 8), Long Type (At least 4) and N wherever applicable as the need of curriculum	MCQs for Inte	rnal Assessme	ent (At least 8)			
Questions:	Short Type (At least 8):						
	1. What are bioethics? List out ethics involved in GMO.						
	3. What are different biosafety levels?						
	4. What are different regulatory authorities for biosat	fety?					
	6. What are occupational health risks?						
	Long Type (At least 4):		2				
	1. Give an account on controversial ethical issues in 2. Describe in detail the ethics related to GMO and e	biological scient scient biological scient biological science biologic	ences?				
	3. Explain safety and ecological assessment of drugs	s, vaccines,.					
	4. Discuss the ethics in IVF, embryo research and pr	renatal screeni	ng.				
	1) FDA and EPA stands for;						
	A) Foreign drug administration; Environmental prote	ection agency	_				
	C) Foreign drug association; European protection age	ency	/				
	D) Food and drug administration; European protection	on agency					
	2) PPE is: A) Personal protective equipment						
	B) Public protective equipment						
	C) Possible protective equipment D) All of the above						
	3) Chose the most controversial form of genetic engi	neering in mee	dicine;				
	A) Production of cheap, easily stored vaccine for ma B) The use of cloping technology to create organ for	jor childhood	diseases				
	C) Large organ transplantation from other species	transplantatio	n purpose				
	D) Use of GMO for environmental clean-up in variou	us part of worl	d	o montr			
	be:	, the best place		IC WOLK WOULD			
	A) In a Biological Safety Cabinet						
	B) On the laboratory benchC) On a clean bench, wearing a dust mask						
	D) In a Fume Hood						
	5) IVF stands for;A) Internal variance factor						
	B) In vivo forest						
	C) In vitro fertilization						

D) In vitro forest	
6) Chemical, reagents or broth cultures should be pipetted by?	
A) mouth	
B) pipetter	
C) ear	
D) nose	
7) Biosafety rules says that;	
A) Students can have tea in laboratory	
B) Students should wear lab coats while working in the laboratory	
C) Mouth pipetting is allowed	
D) All of the above	
8) Genetically modified crops cannot be released directly in to environment because;	
A) They are difficult to release	
B) They are difficult to digest	
C) They may pose a risk of unintended gene transfer	
D) All of the above	

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Biotechnology (Three Years- Six Semesters Bachelor's Degree Programme)

Course Template for Entrepreneurship approaches in Plant Tissue culture

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course	Course Name	Credits	Teaching	Exam	Max
		Code			Hours	Duration	Marks
4.5	II	106501	Entrepreneurship approaches	2	30	2 Hrs	30
			in Plant Tissue culture				

Course									
Objectives:									
Course	As per Blooms Taxonomy (4 to 6)								
Outcomes:	CO-1: Understand the Entrepreneurial Opportunities in Plant Tissue Culture.								
	CO-2: Understand the Business Development								
	CO-3: Understand the Ethical considerations in Plant tissue culture.								
	CO-4: Understand the entrepreneurial ventures development.								
Unit	Contents Lab practicals	Worklo	Weightag	Incorporation					
System		ad	e of	of Pedagogies					
		Allotted	Marks						
		(Hrs)	Allotted						
Unit I	Introduction to Plant Tissue Culture	8	8						
Practicals	1.1: Demonstration of aseptic techniques for plant								
	tissue culture								
	1.2: Preparation of culture media for plant cell culture								
	1.3: Subculturing of plant cells in culture vessels								
		_							
Unit II	Business Model Development	7	7						
Practicals	2.1: Group project to develop a business model for a								
	fictional plant tissue culture company, Presentation of								
	the business model to the class for feedback								
	2.2: Market Analysis, Discussion of regulatory								
	requirements for commercializing plant tissue culture								
	products								
		_							
	2.3: Research on market trends and opportunities in								
	plant tissue culture								
	Presentation of findings and recommendations for								
	market entry								
		-							
Linit III	Pogulatory Compliance	8	8						
Practicals	3.1 Case study analysis of regulatory issues food by	0	0						
Tacticals	s.1 Case study analysis of regulatory issues faced by								
	plant ussue culture companies								
	3.2. Discussion of patenting strategies for plant tissue								
	culture products								
	3.3 Group discussion on ethical considerations in plant	-							
	tissue culture								

Unit IV	Business Plan Development	7	7				
Practicals	4.1: Presentation of the business plan to a panel of						
	industry experts for evaluation						
	4.2: Group project to develop a business plan for a	1					
	startup plant tissue culture company						
	4.3: Debate on a controversial ethical issue related to	-					
	plant tissue culture						
		-					
		-					
References							
:							
•	 "Plant Tissue Culture: Techniques and Experiments" 	hy Roberta	H Smith				
	- Than Those Culture. Teeninques and Experiments	oy noochu	II. Sinti				
	• "Plant Cell Culture Protocols" edited by Victor M. L	ovola-Varga	and Neftali	Ochoa-Aleio -			
		<i>j</i> • • • • • • • • • • • • • • • • • • •					
	• "Biotechnology Entrepreneurship: Starting, Managin	g. and Lead	ing Biotech (Companies"			
	F,, _,, _	5,	8	F			
	• "Essentials of Entrepreneurship and Small Business N	Managemen	t" by Normai	n M.			
	Scarborough	0	j				
	• "Plant Tissue Culture: Development and Biotechnolo	"Plant Tissue Culture: Development and Biotechnology" by Edwin R. George and Michael A.					
	Hall		8-				
	• "Introduction to Biotechnology" by William J. Thiem	an and Mic	hael A. Palla	dino			

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Biotechnology (Three Years- Six Semesters Bachelor's Degree Programme)

Course Template for Entrepreneurship approaches in Animal Tissue culture

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course	Course Name	Credits	Teaching	Exam	Max
		Code			Hours	Duration	Marks
4.5	II	106502	Entrepreneurship approaches	2	30	2 Hrs	30
			in Animal Tissue culture				

Course				
Cource	As nor Plooms Taxonomy (4 to 6)			
Course	As per Blooms Taxonomy (4 to 6)	nimal Tian	Culture	
Outcomes:	CO-1: Understand the Entrepreneurial Opportunities in A	mmai Tissu	le Culture.	
	CO-2: Understand the Ethical considerations in animal tic			
	CO-5: Understand the entremen surial ventures development	sue culture.		
T T •4	CO-4: Understand the entrepreneurial ventures developme	ent.	XX7 • 1 /	T (•
Unit	Contents Lab practicals	Worklo	Weightag	Incorporation
System		ad	e of	of Pedagogies
		Allotted	Marks	
		(Hrs)	Allotted	
Unit I	Introduction to Animal Tissue Culture	8	8	
Practicals	1.1: Hands-on experience with aseptic techniques			
	1.2: Preparation of culture media for animal cell culture			
	1.3: Subculturing of animal cells in culture dishes			
Unit II	Business Model Development	7	7	
Practicals	2.1: Group project to develop a business model for a			
	fictional animal tissue culture company,			
	Presentation of the business model to the class for			
	feedback			
	2.2: Research on market trends and opportunities in			
	animal tissue culture, Presentation of findings and			
	recommendations for market entry			
	2.3: Intellectual property rights and patenting in animal			
	tissue culture			
Unit III	Regulatory Compliance	8	8	
Practicals	3.1 Discussion of regulatory requirements for			
	commercializing animal tissue culture products			
	S			
	3.2: Case study analysis of regulatory issues faced by			
	animal tissue culture companies			
	r			
	3.3 Compliance and quality assurance in animal tissue			
	culture			
Unit IV	Ethical Considerations	7	7	
Practicals	1: Group discussion on athical considerations in	/	,	
1 Tacticals	4.1. Oroup discussion on eulical considerations m			

	animal tissue culture, planning and management of Animal tissue culture			
	4.2: Debate on a controversial ethical issue related to animal tissue culture4.3: Group project to develop a business plan for a			
	startup animal tissue culture company4.4: Presentation of the business plan to a panel of industry experts for evaluation			
References :	 Freshney, R. Ian. Culture of Animal Cells: A Manual Applications. John Wiley & Sons, 2015. Masters, John R. Animal Cell Culture: Essential Meth "Plant Tissue Culture: Techniques and Experiments" b "Biotechnology Entrepreneurship: Starting, Managing Craig Shimasaki 	of Basic T ods. John V by Roberta g, and Lead	echnique and Wiley & Sons H. Smith ing Biotech C	l Specialized s, 2018. Companies" by

Sant Gadge Baba Amravati UniversityFACULTY: Science and Technology Teaching and Learning Scheme (Cell Biology) for the Three Year UG Degree of Bachelor of Biotechnology<u>(Three Years- Six Semesters Bachelor's Degree Programme</u>)

Course (Theory Curriculum): Microbial and Cell Staining Techniques

Each theory paper of Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours as mentioned in the table.

Level	Semester	Course Code	Course Name	Credits	Teaching	Exam	Max
					Hours	Duration	Marks
4.5	Ι	106601	Microbial and Cell	2	30	2 Hrs	30
			Staining Techniques				

Course Objectives				
Course Outcomes:	CO-1:Understand the fundamental principles of staining techn CO-2: Demonstrate proficiency in basic microscopy a preparation CO-3: Explore advanced staining techniques and emerging tre CO-4: Promote lifelong learning and curiosity CO-5: Develop practical microbiology laboratory skills	niques and sample ends		
Unit System	Contents	Workload Allotted (Hrs)	Weight age of Marks Allotted	Incorporation of Pedagogies
Unit I	Simple Staining Techniques Practicals: 1. Perform simple staining using crystal violet, methylene blue, and safranin. 2. Microscopic examination of stained bacterial and eukaryotic cell samples. 3. Step-by-step execution of Gram staining on bacterial smears. 4. Differentiation and microscopic observation of Grampositive and Gram-negative bacteria. 5. Practice acid-fast staining using Ziehl-Neelsen and Kinyoun methods. 6. Identification of acid-fast organisms in stained samples.	8	8	
Unit II	Specialized Staining Techniques 1. Perform endospore staining on bacterial samples. 2. Observation of endospore structures under the microscope. 3. Capsule staining techniques on bacterial samples. 4. Microscopic examination of bacterial capsules. 5. Demonstration and practice of flagella staining on bacterial samples. 6. Observation of flagella arrangements. 7. Techniques for negative staining of microbial samples. 8. Microscopic observation of negatively stained	7	7	

	specimens.			
Unit III	Fluorescent Staining	8	8	
Unit III	1. Hands-on practice with fluorescent dyes and			
	2. Perform immunohistochemistry procedures using			
	antibodies.			
	3. Visualization of immunostained samples under the microscope			
	4. H&E staining of tissue sections.			
	5. Microscopic examination and interpretation of stained tissues.			
Unit IV	Advanced Techniques and Emerging Trends	7	7	
	1. Hands-on experience with FISH techniques.			
	 Introduction to live cell imaging techniques. Observation of live cells using advanced microscopy 			
	4. Overview and demonstration of 3D imaging methods.			
	5. Practical application of 3D imaging in microbial and cell samples.			
	References			
	1. "Microbe" by Michele Swanson, Gemma Reguera, and			
	Hazel Barton 2. "Brock Biology of Microorganisms" by Michael T.			
	Madigan, Kelly S. Bender, Daniel H. Buckley, and W.			
	3. "Color Atlas and Textbook of Diagnostic			
	Microbiology" by Elmer W. Koneman, Stephen Allen,			
	4. "Histology: A Text and Atlas" by Michael H. Ross,			
	Wojciech Pawlina "Molecular Biology of the Cell" by Bruce Alberts			
	Alexander Johnson, Julian Lewis, David Morgan,			
	Martin Raff, Keith Roberts, and Peter Walter "Techniques in Microbiology: A Student Handbook"			
	by John M. Lammert, Susan M. Russell			
	7. "Diagnostic Medical Parasitology" by Lynne Shore Garcia			
	8. "Fluorescence Microscopy: From Principles to			
	Biological Applications" by Ulrich Kubitscheck9. "Immunohistochemistry: Basics and Methods" by Ralf			
	J. Rieker and Reinhard von Wasielewski			
	H. Hill Jr. and David C. Finster			
	11. "Textbook of Microbiology" by Prof. C.P. Baveja 12. "Textbook of Microbiology" by Ananthanarayan and			
	Paniker			
	13. "A Textbook of Cell Biology" by P.S. Verma and V.K. Agarwal			
	14. "Microbiology: A Textbook" by R. Ananthanarayan			
	and C.K. Jayaram Paniker			

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Biotechnology (Three Years- Six Semesters Bachelor's Degree Programme)

Course Template for Clinical Lab Technology

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course Code	Course Name	Credits	Teaching Hours	Exam Duration	Max Marks
4.5	II	106602	Clinical Lab Technology	2	30	2 Hrs	30

Course								
Objectives:								
Course	As per Blooms Taxonomy (4 to 6)							
Outcomes:	CO-1: Understanding of Laboratory Safety							
	CO-2: To learn the Proficiency in Hematological Techniques							
	CO-3: Understand the Competence in Clinical Chemistry.							
	CO-4: Understand the entrepreneurial ventures in clininca	al technolog	y					
Unit	Contents Lab practicals	Worklo	Weightag	Incorporation				
System		ad	e of	of Pedagogies				
		Allotted	Marks					
		(Hrs)	Allotted					
Unit I	Introduction to Clinical Laboratory Techniques	8	8					
Practicals	1.1: Introduction to laboratory safety procedures#							
	1.2: Familiarization with laboratory equipment and							
	instruments							
	1.3: Basic principles of laboratory organization and							
	management							
Unit II	Hematology	7	7					
Practicals	2.1: Blood sample collection techniques							
	2.2: Hematological tests: complete blood count (CBC),							
	hemoglobin estimation, hematocrit determination							
	2.3: Blood smear preparation and staining techniques							
	2.4 Examination of blood cells under the microscope							
Unit III	Clinical Chemistry	8	8					
Practicals	3.1 Introduction to biochemical tests and their clinical							
	significance							
	3.2:Basic principles of spectrophotometry and							
	colorimetry							
	3.3 Performing biochemical tests: glucose estimation,							
	liver function tests (e.g., ALT, AST, ALP), renal							
	function tests (e.g., creatinine, blood urea nitrogen)							
	3.4 Interpretation of biochemical test results							
Unit IV	Microbiology	7	7					
Practicals	4.1: Aseptic techniques for microbiological culture							
	4.2: Culture and identification of common bacterial							
	pathogens							
	4.3: Antimicrobial susceptibility testing using disk							
	diffusion method							
	4.4: Introduction to staining techniques: Gram staining,							
	acid-fast staining							
References								
	• "Clinical Laboratory Hematology" by Shirlyn B. Mc	Kenzie. Lvi	nne Williams	and John N				

McKenzie

- "Clinical Chemistry: Principles, Techniques, and Correlations" by Michael L. Bishop, Edward P. Fody, and Larry E. Schoeff
- "Clinical Microbiology Procedures Handbook" by Amy L. Leber
- "Clinical Immunology and Serology: A Laboratory Perspective" by Christine Dorresteyn Stevens and Linda E. Miller
- "Clinical Laboratory Management" by Lynne S. Garcia
- "Clinical Laboratory Science Review" by Robert R. Harr

Semester I BSc Biotechnology					
S. No	The Vertical	Type of course	Course code	Course name	Name of the Faculty
1.	Major	Theory + Lab practical	106201	Cell Biology	Ankit Sir
2.	Major	Theory + Lab practical	106202	Plant Physiology	Gokul Sir
3.	Generic/Open Elective	Theory	106401	Microbial Technology	Done
4.	Generic/Open Elective	Theory	106402	Developmental Biology	Aswin Sir
5.	VSC	Lab/Practical	106501	Entrepreneurship approaches in Plant Tissue Culture	Ankit SIr
6.	SEC	Lab/Practical	106601	Microbial and cell staining	Done
Sen	nester II BSc Bi	iotechnology			
S. No	The Vertical	Type of course	Course code	Course name	Name of the Faculty
1.	Major	Theory + Lab practical	106203	Mammalian Physiology	Aswin SIr
2.	Major	Theory + Lab practical	106204	Bioenergetics, Biomolecules and Metabolism	Aswin Sir
3.	Minor	Theory	106301	Introduction of Areas in Biotechnology	Done
4.	Generic/Open Elective	Theory	106403	Elementary forensic science	Done

5.	Generic/Open Elective	Theory	106404	Bioethics and Biosafety	Shinde Sir
6.	VSC	Lab/Practical	106502	Entrepreneurship approaches in Animal Tissue culture	Himanshu SIr
7.	SEC	Lab/Practical	106602	Clinical Lab Technology	Gokul Sir

Sant Gadge Baba Amravati UniversityFACULTY: Science and Technology Teaching and Learning Scheme (Cell Biology) for the Three Year UG Degree of Bachelor of Biotechnology(Three Years- Six Semesters Bachelor's Degree Programme)

Course (Theory Curriculum): Cell Biology

Each theory paper of Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours as mentioned in the table.

Leve 1	Semester	Course Code	Course Name	Credit s	Teaching Hours	Exam Duration	Max Marks
4.5	Ι	106201	Cell Biology	2	30	2 Hrs	30

Course Objectives :				
Course Outcomes:	CO-1: Understand the basic and advanced concepts in Mi CO-2: Understand the Cell as a basic structural and fun- lifeCO-3: Differentiate prokaryotic and eukaryotic Cel CO-4: Understand the structure and functions of variou CO-5: Understand the basics of Cell organization	croscopy ctional un ll. s cell orga	it of nelles	
Unit System	Contents	Workload Allotted (Hrs)	Weightage of Marks Allotted	Incorporation of Pedagogies
Unit I	Cell: functional unit of life1.1: Cell: Definition, concept, history of cytology with reference to the cell and cell division1.2: Cell size and shape, its elemental and organic composition, unicellular and multicellular organisms1.3: Types of cells: Prokaryotic and Eukaryotic cells, compartmentalization of eukaryotic cells1.4: Introduction to the cell organelles	8	8	
Unit II	Cell: functional unit of life2.1: Structure and functions of:• Nucleus• Endoplasmic Reticulum (Smooth and Rough)2.2: Structure and functions of:• Golgi complex• Ribosomes (prokaryotic and Eukaryotic)2.3: Structure and functions of:• Mitocondria• Plastids (types)- chloroplast (structure and functions)2.4: Structure and functions of:• Lysosomes: Vacuoles and micro bodies• Cell wall	7	7	
Unit III	Cell membrane and cell motility 3.1: Cell membrane and permeability: Chemical components of biological membranes, organization and Fluid Mosaic Model, cell recognition and membrane transport. 3.2: Membrane Vascular system, cytoskeleton and cell motility: Structure and function of microtubules, Microfilaments. 3.3: Structure and functions of cilia and flagella 3.4: Movement of cilia and flagella	8	8	
Unit IV	Cell Division	7	7	

4.1: Cell cycle: G-phase, S-phase and M-phase4.2: Mitosis: concept and phases of mitosis		
4.3: Meiosis: concept, types and phases4.4: Significance of mitosis & Meiosis and Differences		

References:	 Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments. 6thEdition. John Wiley & Sons. Inc. De Robertis, E.D.P. and De Robertis, E.M.F. 2006. Cell and Molecular
	3) Biology. 8th edition. Lippincott Williams and Wilkins, Philadelphia.
	4) Cooper, G.M. and Hausman, R.E. 2009. The Cell: A Molecular
	 Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009. The Worldof the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco.
	7) Albert M. Lewis, Introduction to cell biology and microbiology
	8) Powar, C. B. and Daginawala, H. F. (2010). General Microbiology Vol. I and II, 2nd edition, Himalaya Publishing House, Mumbai
	9) Powar, C.B. (2012). Cell Biology, 3rdedition, Himalaya Publishing House, Mumbai

Syllabus prescribed for academic session 2024-2025 and onward

Lab-1 Practical (B.Sc. Semester I) Programme: B.Sc. Biotechnology

CO: Upon completion of this course successfully, students would be able to

- 1. Adapt basic knowledge on various techniques and areas of cell biology.
- 2. To design and execute experimental procedures in cell biology.

Lab-1 Practical (B.Sc. Semester I) based on course code 106200 and 106201

- 1. To preapare permanent slide by using plant material like leaf, stem or root.
- 2. Study the effect of temperature and organic solvents on semi permeable membrane.
- 3. Demonstration of dialysis.
- 4. Study of plasmolysis and de-plasmolysis.
- 5. Demonstrate Cell fraction and identification of cell fraction
- 6. Study of structure of any Prokaryotic cell.
- 7. Study of structure of any Eukaryotic cell.
- 8. Study of Cell division (Meiosis) in onion flower bud.
- 9. Study of Cell division (Mitosis) in onion root tip.
- 10. Study of osmosis (Exo and Endo).
- 11. Demonstration of Centrifugation.
- 12. Trypan blue exclusion of assay for cell viability.

Short Questions:
1) What is the basic structural unit of all living organisms?
2) Define the term "cell theory."
3) Name the two main types of cells and briefly describe their differences.
4) What is the function of the cell membrane?
5) Define the term "organelle."
6) Name the three components of the cytoskeleton.
7) What is the primary function of the mitochondria?
8) Briefly explain the difference between prokaryotic and eukaryotic cells.
9) What is the role of the endoplasmic reticulum in the cell?
10) Name the organelle responsible for protein synthesis.
11) Define the term "cellular respiration."
12) What is the function of the Golgi apparatus?
13) Explain the difference between diffusion and osmosis.
14) What is the purpose of the cell cycle?
15) Name the stages of mitosis in order.
16) Define apoptosis.
17) What is the role of ribosomes in the cell?
Long Questions:
1) Explain the cell theory and its significance in biology.
2) Compare and contrast plant and animal cells in terms of structure and organelles.
3) Describe the fluid mosaic model of the cell membrane.
4) Discuss the structure and function of the nucleus in eukaryotic cells.
5) Describe the process of cellular respiration, highlighting its different stages.
6) Explain the stages of the cell cycle and the events that occur in each stage.
7) Discuss the process of mitosis and its significance in cell division.
8) Describe the structure and function of the mitochondria in detail.
9) Explain the roles of smooth and rough endoplasmic reticulum in the cell.
10) Discuss the structure and function of the Golgi apparatus.
11) Explain the principles of diffusion and osmosis, providing examples.
12) Describe the process of transcription and translation in gene expression.
13) Discuss the structure of DNA and its role in heredity.
14) Explain the significance of enzymes in cellular processes.
15) Describe the stages of meiosis and compare them with mitosis.
16) Explain the concept of homeostasis in the context of cell biology.
Multiple-choice questions (MCQs) related to cell biology:
1) What is the primary function of the cell membrane?
a. Energy production
b. Structural support c. Cellular communication
d. Selective barrier

2) Which organelle is responsible for synthesizing ATP in eukaryotic cells?

- a. Endoplasmic reticulum
- b. Golgi apparatus
- c. Mitochondria
- d. Nucleus

3) What is the main function of ribosomes in the cell?

- a.Protein synthesis
- b. Lipid synthesis
- c. ATP production
- d. DNA replication

4) In which phase of the cell cycle does DNA replication occur?

- a. G1 phase
- b. S phase
- c. G2 phase
- d. M phase

5) Which cellular process is responsible for breaking down and recycling cellular components? a. Mitosis

- b. Apoptosis
- c. Autophagy
- d. Cytokinesis

6) What is the primary function of the Golgi apparatus?

- a. Protein synthesis
- b. Lipid synthesis
- c. Sorting and modifying cellular products
- d. ATP production

7) Which statement about prokaryotic cells is true?

- a. They have a nucleus.
- b. They lack a cell membrane.
- c. They have membrane-bound organelles.
- d. They lack a true nucleus and membrane-bound organelles.

8) Which cellular structure is composed of microtubules and microfilaments and provides structural support to the cell?

- a. Cytoskeleton
- b. Endoplasmic reticulum
- c. Nucleus
- d. Golgi apparatus

9) What is the correct order of stages in mitosis? a. Prophase, Metaphase, Anaphase, Telophase

b. Anaphase, Metaphase, Prophase, Telophase

- c. Metaphase, Prophase, Anaphase, Telophase
- d. Telophase, Anaphase, Metaphase, Prophase

10) Which cellular organelle is involved in detoxification processes and lipid metabolism?

- a. Peroxisome
- b. Lysosome
- c. Endoplasmic reticulum
- d. Golgi apparatus

Answers:

d. Selective barrier

- c. Mitochondria
- a. Protein synthesis
- b. S phase
- c. Autophagy

c. Sorting and modifying cellular products
d. They lack a true nucleus and membrane-bound organelles.
a. Cytoskeleton
a. Prophase, Metaphase, Anaphase, Telophase
a. Peroxisome

Sant Gadge Baba Amravati UniversityFACULTY: Science and Technology Teaching and Learning Scheme (Cell Biology) for the Three Year UG Degree of Bachelor of Biotechnology(Three Years- Six Semesters Bachelor's Degree Programme)

Course (Theory Curriculum): Plant Physiology

Each theory paper of Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours as mentioned in the table.

Leve 1	Semester	Course Code	Course Name	Credit s	Teaching Hours	Exam Duration	Max Marks
4.5	Ι	10620	Plant Physiology	2	30	2 Hrs	30

Course Objectives				
Course Outcomes:	CO-1: Understanding of Plant Physiology Concepts CO-2: Knowledge of Plant Growth and Development CO-3: Ability to Analyze Plant Responses to Environ CO-4: Competence in Laboratory Techniques CO-5: Awareness of Current Issues in Plant Physiolog	nental Sti y	muli	
Unit System	Contents	Workload Allotted (Hrs)	Weightage of Marks Allotted	Incorporation of Pedagogies
Unit I	Introduction to Plant Physiology1.1: Definition and scope of plant physiology1.2: Historical developments in the field of plant physiology1.3: Importance of plant physiology in agriculture and biotechnology1.4 Recent advances in understanding plant physiology	8	8	
Unit II	Plant Tissues and Plant Water Relations2.1: Structure and function of plant cellsPlant tissue types and their roles in plant physiologyCell division and growth in plants2.2: Water uptake and transport in plants2.3 Transpiration and its role in plant water balancePlant adaptations to water stress2.4 Research methods and techniques in plantphysiology	7	7	
Unit III	Mineral Nutrition3.1:Essential elements for plant growth3.2: Mechanisms of nutrient uptake and transport3.3: Nutrient deficiencies and their effects on plantphysiology3.4: Implications of plant physiology researchfor agriculture and environmentalconservation	8	8	
Unit IV	Plant Development and Plant growth regulators 4.1: Seed germination and seedling growth Flowering and fruit development Senescence and programmed cell death in plants	7	7	

4.2: Types and functions of plant hormones
Hormone signaling pathways in plants
4.3: Role of hormones in plant growth, development, and
responses to environmental stimuli

References:		
	•	"Plant Physiology" by Lincoln Taiz and Eduardo Zeiger
	•	"Plant Physiology and Development" by Peter H. Raven, Ray F. Evert, and Susan E. Eichhorn
	•	"Plant Physiology" by Frank B. Salisbury and Cleon W. Ross
	•	"Physiology of Crop Production" by K.P. Singh - This book focuses on the physiological processes that govern crop growth and development, with an emphasis on practical applications in agriculture.
	•	"Plant Physiology: A Treatise, Volume IB: Physiology of Development: From Seeds to Sexuality" by Torrey John G
	•	"Physiology and Biochemistry of Drought Tolerance in Plants" by U. Chaturvedi and M.N.V. Prasad
	•	"Plant Physiology: Molecular, Biochemical, and Physiological Fundamentals of Metabolism and Development" by Hans-Henning Kunz
	•	"Plant Physiology: With Reference to the Green Plant" by R.O. Whyte

Syllabus prescribed for academic session 2024-2025 and onward

Lab-1 Practical (B.Sc. Semester I) Programme: B.Sc. Biotechnology

- 1. Photosynthesis Rate Measurement
- 2. Stomatal Density and Distribution
- 3. Water Potential Measurement
- 4. Chlorophyll Extraction and Quantification
- 5. Respiration Rate Measurement: Determine the respiration rate of germinating seeds or plant tissues using a respirometer.
- 6. Seed Germination and Growth Analysis
- 7. Mineral Nutrient Deficiency Symptoms
- 8. Hormone Effects on Plant Growth.
- 9. Phototropism Experiment:
- 10. Water Stress Response
- 11. Leaf Absorption Spectrum
- 12. Plant Growth under Different Light Conditions

Short Questions:
1) Define transpiration.
2) Explain the role of auxins in plant growth.
3) What is the difference between C3 and C4 plants?
4) Define photoperiodism.
5) Describe the process of mineral nutrient uptake in plants.
6) What is the role of gibberellins in seed germination?
7) Explain the process of water potential in plants.
8) What is the significance of stomata in plant physiology?
9) Define apical dominance.
10) Explain the concept of osmotic potential.
Long Questions:
1) Discuss the process of photosynthesis in plants, highlighting the role of light and dark reactions.
2) Describe the mechanisms of plant water uptake and transport in the xylem.
3) Explain the role of plant hormones in plant growth and development, using specific examples.
4) Discuss the adaptations of plants to different environmental stresses, such as drought or salinity.
5) Describe the process of seed germination, including the role of hormones and environmental factors.
6) Explain the process of transpiration in plants and its significance in water transport.
7) Discuss the role of phytochromes in plant responses to light and photoperiodism.
8) Describe the process of mineral nutrient uptake in plants, including the types of nutrients and their functions.
9) Explain the process of respiration in plants, including glycolysis, the citric acid cycle, and oxidative phosphorylation.
10) Discuss the importance of plant physiology in agriculture and biotechnology, with examples.
Multiple-choice questions (MCQs) related to cell biology:
11) 1. Which of the following is a primary pigment involved in photosynthesis?
A. Chlorophyll a B. Xanthophyll C. Carotenoid D. Phycobilin Answer: A
12) The opening and closing of stomata are regulated by:
A. Auxins B. Cytokinins C. Abscisic acid D. Ethylene Answer: C
13) Which of the following is a macronutrient required for plant growth?
A. Iron B. Zinc C. Nitrogen D. Manganese Answer: C
14) The enzyme responsible for carbon fixation in the Calvin cycle is:
A. Rubisco B. ATP synthase C. NADP reductase D. Phosphofructokinase Answer: A
15) Photoperiodism is a response of plants to:
A. Light intensity B. Temperature C. Day length D. Soil pH Answer: C
16) Which plant hormone is responsible for cell elongation?
A. Gibberellin B. Auxin C. Cytokinin D. Ethylene Answer: B
17) The process by which plants bend toward light is called:
A. Phototropism B. Gravitropism C. Thigmotropism D. Chemotropism Answer: A
18) The process of breaking dormancy in seeds is known as:

A. Germination B. Imbibition C. Stratification D. Vernalization Answer: A
19) The movement of sugars from sources to sinks in plants occurs through:
A. Xylem B. Phloem C. Parenchyma cells D. Collenchyma cells Answer: B
20) The process of water loss from plant leaves through stomata is called:
A. Evaporation B. Transpiration C. Absorption D. Osmosis Answer: B

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Biotechnology (Three Years- Six Semesters Bachelor's Degree Programme)

Course (Theory Curriculum): Mammalian Physiology

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course Code	Course Name	Credits	Teachi	Exam	Max
					ng	Duration	Marks
					Hours		
4.5	=	106203	Mammalian Physiology	2	30	2Hrs	30

CourseObj ectives:	CO 1 This course will review general principles of the funct emphasis on the function and regulation of neuromuscular, digestive, and excretory systems. CO 2 The goal is to provide students with the basic knowle operate.	tion of the , cardiovas edge to un	human bod scular, respi derstand ho	ly as a mammal, with iratory, endocrine, ow their own bodies				
Course	CO1: Understand the physiology of respiration							
Outcomes:	CO2: Attain knowledge about physiology and mechanis	sm of dige	estion & ab	osorption				
	CO3: Understand the Circulation of body fluid (Blood and Lymph), Role of Hearth and blood							
	vessels in blood circulation							
	CO4: Acquire knowledge about mechanism of blood Coagulation							
	CO5: Understand physiology of muscle and role of mus	cle contra	action in m	novement and				
	locomotion.							
	CO6: Understand the concept of excretion and Osmore	egulation						
	CO7: Able to understand the Physiology Nervous and E	ndocrine	coordinat	ion in Human Body.				
UnitSystem	Contents	Workload	Weightage	IncorporationofPedagogies				
		Allotted (Hrs)	of MarksAll					
			otted					
Unitl	Digestion and Respiration	8	8					
	1.1: Digestion: Mechanism of digestion & absorption							
	of carbohydrates, Proteins, Lipids and nucleic							
	acids.							
	1.2: Composition of bile, Saliva, Pancreatic,							
	gastric and intestinal juice							
	1.3: Respiration: Exchange of gases,							
	Transport of O2 and CO2.							
	1.4: Oxygen dissociation curve, Chloride							
	shift.							
Unitll	Circulation	7	7	-				
omen	2 1: Blood : Definition and its constituents functions		,					
	of blood. Heart: Structure of human heart, pace							
	maker, Cardiac cycle.							
	2.2 Blood coagulation factors, blood groups A. B. O							
	system and Rh-factor.							
	2.3: Haemopoisis, Mechanism of coagulation of							
	2.4: Mechanism of working of heart: Cardiac output,							
	cardiac cycle, Origin & conduction of heart							
	Seat.							
UnitIII	Muscle physiology and osmoregulation	8	8					
	3.1: Structure of cardiac. smooth & skeletal muscle.							

nulus, All or None rule, single , muscle tone, isotonic and isometric hysical, chemical & electrical hanism of muscle contraction. m of muscle contraction by Sliding Y Stimuli, all or none law, fatigue, rigor fuscles: striated, non-striated and es and Chemical Composition of striated muscular junction. modes of excretion, mammalian em, Ornithine cycle, Mechanism of urine ndocrine coordination relinated and non-Myelinated nerve sm of generation & propagation of structure of synapse, synaptic Itary, pineal, thymus, arathyroid and o & hyper-secretions disorders: Dwarfism, Acromegaly, dema, Cretinism, sis,

References:	1. Guyton, A.C. & Hall, J.E. (2006). Textbook of Medical Physiology. XI Edition. Hercourt Asia				
	PTE Ltd. /W.B. Saunders Company.				
	2. Tortora, G.J. & Grabowski, S. (2006). Principles of Anatomy & Physiology. XI Edition. John				
	wiley & sons,Inc.				
	3. Prosser and Brown : Comparative Animal Physiology				
	4. Hisotlogical Slides of Respirator systems, circulatory system,				
	Muscles, Nervous system Endocrine glands, Gonads, placentae				
	5. Best and Taylor : Physiological basis of Medical practice				
	6. C Hoar, W.S General and comparative Physiology. Prentice Hall				
	of India.				
	7. Nagabushnam, R Animal physiology. S.Chand & co.				
	8. Martin, D.W. P.A. Mayes and W.W. Rodwell, Harper's Review of				
	Biochemistry lange Medical Publications.				
	9. Prosser, C.L. and F.A.Brown Comparative Animal physiology.				
	W.B. Suanders.				
	10. Rama Rao, A.V.S.S Biochemistry. UBSPD.				
	11. Stryer. L. Biochemistry Wiley International				
	12. Verma, P.S. and V.K. Agarwal Animal physiology. S.Chand & co.				
	13. Wilson, J.A., Principles of Animal Physiology, Macmillan				
	14. Chatterjee, C.J; Human Physiology(Vol-I and II				
	15. Lehninger. L Biochemistry. W.H. Freeman & co.				

Practicals

- 1. Determination of blood groups in human being.
- 2. Differential counts of blood.
- 3. Determination of hemoglobin percentage with the help of haemometer.
- 4. Finding the coagulation time of blood
- 5. R.B.C. count.
- 6. W.B.C. count.
- 7. Preparation of haemin crystals
- 8. Measurement of blood pressure.
- 9. Action of salivary amylase on starch.

10. Qualitative detection of nitrogenous waste products (Ammonia,

urea, uric acid) in given sample.

11. Demonstration of kymograph unit, Respirometer through

available resources.

12. Study of any five clinical conditions associated with hypo/hyper active endocrine glands using photographs (Gigantism, dwarfism, acromegaly, cretinism, myxodema, Graves' disease, cushion's disease)

Sant Gadge Baba Amravati University FACULTY: Science and Technology

Teaching and Learning Scheme (Bioenergetics, Biomolecules and Metabolism) for the Three Year UG Degree of Bachelor of Biotechnology

(Three Years-Six Semesters Bachelor's Degree Programme)

Course (Theory Curriculum): Bioenergetics, Biomolecules and Metabolism

Each theory paper of Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours as mentioned in the table.

Level	Semester	Course	Course Name	Credits	Teaching	Exam	Max
		Code			Hours	Duration	Marks
4.5	II	106204	Bioenergetics, Biomolecules and	2	30	2Hrs	30
			Metabolism				

Course Objectives : Course Outcomes:	 CO-1: To provide comprehensive Understanding of Biogenetics, Biomolecules and Metabolism. CO-2: To acquaint students with bioenergetics, biomolecules and metabolism. CO-3. To make students understand the importance of biomolecules in life. CO-1:Underst and the biogenetics process in the cell. CO-2:Understand the enzymes, mechanism and their functions. 				
	CO-4:Understand the lipid metabolism. CO-5:Understand the lipid metabolism disorders.		-	_	
Unit System	Contents	Workload Allotted (Hrs)	Weightage ofMarks Allotted	Incorporationof Pedagogies	
UnitI	Bioenergetics and vitamins1.1: Energy and its form,Free energy, pH1.2:Laws of thermodynamics, enthalpy and entropy1.3:Redox potential, ATP bioenergetics1.4: Vitamins: Dietary sources, Deficiency manifestation, biological functions of fat soluble and water-soluble vitamins.	8	8		
UnitII	 Enzymes: 2.1:Definition, Classification and Nomenclature 2.2:Terminology:Substrate,prosthetic group, coenzyme, cofactor, activesite, inductive enzymes, allosteric enzymes, Isozymes, metalloenzymes, ribozymes 2.3:Effect of temperature, pH, substrate Concentration and enzyme concentration on enzyme catalyzed reactions 2.4:Mechanism of enzyme action (Lock and Key Model; Induced fit model) 	7	7		
UnitIII	Carbohydrate metabolism: 3.1:Glycolysis and energy account 3.2:Glycogenolysis and its importance 3.3:Glycogenesis and its importance 3.4:Pentosephosphate pathway	8	8		
UnitIV	Lipid metabolism: 4.1:Fatty acid biosynthesis 4.2:Beta-oxidation of fatty acids	7	7		

	4.3:Cholesterol synthesis
	4.4:Lipid metabolism disorders (Gaucher disease;
	Tay-Sacs disease)
References:	1. Lehninger Principles of Biochemistry By:David L.NelsonandCox
	2. Biochemistry By:Rex Montgomery
	3. Harper's Biochemistry By: RobertK.Myrray
	4. Enzymes By:Trevor Palmer
	5. Enzyme structure and mechanism By:Alan Fersht
	6. Principles of Biochemistry By:Donald J. Voet, JudithG. Voet, Charlotte
	7. Satyanarayana, U. and Chakrapani U. (2010) Biochemistry, Books and Allied Pvt.
	Ltd., Kolkata, India.
	8. Agarwal, G. R. Agarwal K., Agarwal O. P. (2005) Text Book of Biochemistry, 13th
	edn., Goel Publishing House, Krishna Prakashan Media Pvt. Ltd., Meerut, India.
	9. Jain, J.L., Jain, S. and Jain, N. (2005) Fundamentals of Biochemistry, 6th edn., S.
	Chand and Company Ltd., Delhi.
	10. Berg, J. M., Tymoczko, J. L. and Stryer, L. (2006) Biochemistry, VI Edition, W.H
	Freeman and Co

Practicals.

- 1. Qualitative tests for carbohydrates .
- 2. Qualitative tests for lipids.
- 3. Qualitative test for amylase .
- 4. To study the effect of pH on the activity of salivary amylase enzyme.
- 5. To study the effect of temperature on the activity of salivary amylase enzyme.
- 6. Extraction and detection of Starch from Potatoes/ maize.
- 7. Estimation of carbohydrates by DNSA method .
- 8. Separation of carbohydrates by paper chromatography.
- 9. Estimation of reducing sugars by DNSA method.

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Biotechnology (Three Years- Six Semesters Bachelor's Degree Programme)

Course Template for Theory Curriculum: Introduction of Areas in Biotechnology

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course	Course Name	Credits	Teaching	Exam	Max
		Code			Hours	Duration	Marks
4.5	Ι	106301	Introduction of Areas in	2	30	2 Hrs	30
			Biotechnology				

Course									
Course	As per Blooms Taxonomy (1 to 6)								
Outcomes:	CO-1: Understand the Application of Biotechnology in Agriculture and Food industries								
outcomest	CO-2: Understand the Application of Biotechnology in Fe	rmentation	technology a	and in Pharma.					
	CO-3: Understand the gene editing and cloning.								
	CO-4: Understand the new product development methods by genetic engineering								
	CO-5: Understand the cell culture methods.	CO-5: Understand the cell culture methods.							
	CO-6:Understand the importance of IPR and Patent impor	tance.							
Unit	Contents	Worklo	Weightag	Incorporation					
System		ad	e of	of Pedagogies					
		Allotted	Marks						
		(Hrs)	Allotted						
Unit I	Biotechnology in Agriculture, Nanosciences, and	8	8						
	Food industries								
	1.1: Medical Biotechnology: Gene therapy, Diagnostic								
	techniques								
	1.2: Agricultural Biotechnology: Genetically modified								
	organisms (GMOS), Crop improvement and genetic								
	1.3: Nanobiotechnology: Introduction to								
	Nanotechnology in Biotechnology & their Applications								
	in medicine and industry								
	1.4: Food Biotechnology: Food preservation.								
	Genetically modified foods, Bt- Cotton								
	· · · · · · · · · · · · · · · · · · ·								
Unit II	Fermentation technology and Environmental	7	7						
	Biotechnology in industries								
	2.1: Environmental Biotechnology: Bioremediation,								
	Waste treatment using biotechnological approaches								
	2.2: Industrial Biotechnology : Enzyme technology,								
	Permentation processes								
	2.3: Bioprocess Engineering: Upstream and downstream								
	2.4: Dearmacoutical Riotochnology: Drug discovery and								
	development Biopharmaceutical production								
Unit III	Genetic Engineering in Industries	8	8						
	3.1 CRISPR-Cas9 Technology: Principles of CRISPR-								
	Cas9 genome editing								
	3.2: Synthetic Biology: Design and construction of								
	biological systems, Applications in bioproduction								
	3.3 Introdution of Genetic engineering, Cloning of gene,								
	Chimeric DNA								
	3.4 Outcomes of Genetic engineering including Bt-								
	Cotton, Humulin								

Unit IV	Cell Culture & IPR in industries 7 7
Chiti	4 1: Basic Concepts in Plant Tissue culture: Definition
	and history of plant tissue culture. Importance and
	applications in agriculture and horticulture Plant Cells
	and Tissues & Media Composition
	4.2: Plant Callus Culture: Induction and maintenance of
	4.2. France Carlos Curture. Induction and maintenance of colluge sultures. Bola of plant growth regulators
	Canus cultures, Role of plant growth regulators
	Suspension Culture: Methods for establishing and
	maintaining suspension cultures
	4.3: Animal cell Culture methods, Transgenic
	development
	4.4: Intellectual property right: Patents, R & D
	partnership, license agreement and joint venture
References	
:	1. "Bioprocess Engineering: Principles" by Shuler and Kargi
	2. "Biotechnology: Expanding Horizons" by B. D. Singh
	3. "Biotechnology: Fundamentals and Applications" by Y. H. Hui and Nirmal Sinha
	4. "Biotechnology: Indian Perspective" by Alok Dhawan and Satish C. Nautiyal
	5. "Industrial Biotechnology: Sustainable Growth and Economic Success" by Nima Rezaei
Model	Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8)
Questions:	wherever applicable as the need of curriculum.
	Short Type (At least 8):
	1. Discuss the applications of biotechnology in sustainable agriculture.
	2. Discuss the potential applications of nanobiotechnology in environmental remediation.
	3. How does environmental biotechnology contribute to waste treatment and management?
	4. Explore the ethical considerations surrounding gene therapy.
	5. Explore the role of synthetic biology in designing microbial cell factories for industrial
	applications.
	6. Explain the challenges of patenting biotechnological innovations.
	7. Explore the role of IPR in promoting innovation and investment in the biotechnology industry.
	8. How are nanosciences applied in drug delivery systems in biotechnology?
	Long Type (At least 4):
	1. Discuss the role of fermentation in the pharmaceutical industry for the production of therapeutic
	proteins.
	2. What are the ethical considerations surrounding genetically modified organisms (GMOs) in
	agriculture?
	3.Discuss the role of fermentation in the pharmaceutical industry for the production of therapeutic
	proteins.
	4. How has genetic engineering contributed to personalized medicine?
	MCQs for Internal Assessment (At least 8)
	1. What is the primary goal of agricultural biotechnology?
	A) Food preservation
	b) Crop improvement
	D) Water purification
	2 Which biotechnological technique is commonly used for developing genetically modified crops?
	A) DNA sequencing
	B) PCR (Polymerase Chain Reaction)
	C) CRISPR-Cas9
	D) Gel electrophoresis
	3 Which microorganism is commonly used in alcoholic fermentation?
	A) Escherichia coli
	B) Saccharomyces cerevisiae
	C) Streptococcus pyogenes
	D) Lactobacillus acidophilus
	4. What is the primary purpose of large-scale fermentation in biotechnology?
	A) Antibiotic production
	B) Enzyme synthesis
	C) Biofuel production
	D) Vaccine development
	5. What is the main goal of genetic engineering in medicine?
	A) Crop improvement
	B) Drug development
	C) Environmental protection

 6. Which technique is commonly used in gene therapy? A) PCR B) Gel electrophoresis C) CRISPR-Cas9 D) Southern blotting 7. Why is intellectual property important in the biotechnology industry? A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	D) Tartila manufacturin a
 6. Which technique is commonly used in gene therapy? A) PCR B) Gel electrophoresis C) CRISPR-Cas9 D) Southern blotting 7. Why is intellectual property important in the biotechnology industry? A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	D) Textile manufacturing
 A) PCR B) Gel electrophoresis C) CRISPR-Cas9 D) Southern blotting 7. Why is intellectual property important in the biotechnology industry? A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	6. Which technique is commonly used in gene therapy?
 B) Gel electrophoresis C) CRISPR-Cas9 D) Southern blotting 7. Why is intellectual property important in the biotechnology industry? A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	A) PCR
 C) CRISPR-Cas9 D) Southern blotting 7. Why is intellectual property important in the biotechnology industry? A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	B) Gel electrophoresis
 D) Southern blotting 7. Why is intellectual property important in the biotechnology industry? A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	C) CRISPR-Cas9
 7. Why is intellectual property important in the biotechnology industry? A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	D) Southern blotting
 A) To limit scientific progress B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	7. Why is intellectual property important in the biotechnology industry?
 B) To encourage innovation and investment C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	A) To limit scientific progress
 C) To hinder competition D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	B) To encourage innovation and investment
 D) To promote secrecy 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	C) To hinder competition
 8. Which type of intellectual property protection is commonly used for biotechnological inventions? A) Copyright B) Trademark C) Patent D) Trade secret 	D) To promote secrecy
inventions? A) Copyright B) Trademark C) Patent D) Trade secret	8. Which type of intellectual property protection is commonly used for biotechnological
 A) Copyright B) Trademark C) Patent D) Trade secret 	inventions?
B) TrademarkC) PatentD) Trade secret	A) Copyright
C) Patent D) Trade secret	B) Trademark
D) Trade secret	C) Patent
	D) Trade secret

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Botany (Three Years- Six Semesters Bachelor's Degree Programme)

Syllabus for : GOEC : MICROBIAL BIOTECHNOLOGY (106401)

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course Code	Course Name	Credits	Teaching Hours	Exam Duration	Max Marks
4.5		106401	MICROBIAL BIOTECHNOLOGY	2	30	2 Hrs	30

Course	1. To Learn about significance of Microbes in human h	iealth.						
Objectives:	2. To learn about Microbial techniques and their appli	cations.						
Course	As per Blooms Taxonomy (4 to 6)							
Outcomes:	CO-1: Students will be able to Recognize importance of diversity of microbes.							
	CO-2: Students will be able to classify Components and units of a bioprocess industry.							
	CO-3: Students will apply knowledge to produce microbi	ial produc	ts.	,				
	CO-4: students will be able to plan strategies of producing Industrially important microbial							
	enzymes and related products.	0	, ,					
	CO-5: Students will be able to develop their own Microb	ial techno	ology lab.					
	CO-6: Students will Impart knowledge on the various inc	dustrial bi	oproducts					
	CO-7: Students will get Familiarize with various sectors c	of industri	al biotechr	nology				
Unit System	Contents	Workload	Weightage	Incorporation of Pedagogies				
011110,000		Allotted	of Marks					
Init	Introduction to microbial Technology	(nis) 8	Anotteu					
Onter	11 Structure and life cycle of representative groups of		0					
	Ractoria, Eurogi Algao virusos and oukarvotic							
	organisms: physiology of microorganisms:							
	12 Scope of Microbial biotechnology Microorganisms							
	as factories for the production of povel							
	compounds							
	12 Distachaological notantials of microalgae food							
	1.5 Diotectificity potentials of microalgae – 1000,							
	sempounds							
	1.4 Draduction of microbial histortilizars	-						
	1.4 Production of microbial piotertilizers							
	Cyanobacteria, Rhizobium, Azotobacter,							
Unit II	Industrial Byproducts	7	7					
	21 Isolation Preservation and Maintenance of	,	,					
	Industrial Microorganisms							
	2.2 Fermenter parts and components: Media for	-						
	industrial fermentation: Sterilization.							
	2.3 Industrial Bioproducts- microbial synthesis of	-						
	organic acids (Citric acid), alcohol (ethanol),							
	vitamin(B12) and beverage (wine)							
	24 Industrially important microbial enzymes: Types	-						
	mode of action and industrial applications of microbial							
	amylases and proteases							
Unit III	Microbes in human health	8	8					
	3.1 Microbial production of therapeutically important							
	products:. o Antibiotics: Penicillin, Streptomycin							
	3.2 Probiotics and prebiotics: Fundamental aspects	-						
	and health benefits							
	3.3 Production of single cell protein from bacteria.							
	algae and fungi : nutritional value. substrates used.							
	process examples, applications.							
	3.4 Cultivation of edible and medicinal musbrooms:							

	Nutritional and medicinal properties			
				-
Unit IV	Microbial technology and its application	/	/	
	4.1 Microbial technology of termented dairy products			
	2 mierches in agretistache dagy and mierchiel			
	4.2 microbes in agrobiotechnology and microbial			
	A 2 Minutes;			
	4.3 Microbes in medical biotechnology, microbes in			
	A Detenting microbial biotochnology			
	4.4 Patenting microbial biotectinology			
	4.3 Opportunity and Career in Inicrobial technology			
References:	1 Lee Y. K. Microbial Biotechnology: Principles and appl	ications \	l Norld Scie	l ntific Publisher 2003
nererences.				
	Publishing Company, Redwood City, CA, 1995.	uction, 5	th Editior	1. Benjamin/Cummings
	3. Board RG, Jones D, Skinner FA, Identification Microbiology, 1 st Ed. Blackwell Science, 1992.	methods	in applie	d and Environmental
	4. Funke, Study Guide for Microbiology, 5 th Ed. E Redwood City, CA, 1995.	Benjamin/	Cummings	Publishing Company,
	5. peter F Stanbury, Allan Whitaker, Steohen J Hall, 20 Elsevier Science Ltd, Second Edition.	13, Princip	oles of Fer	mentation Technology,
	6. Manual of Industrial Microbiology and Biotechnolog Davies, ASM press, Washington DC, 2010.	y, III editi	on, Arnolo	d. L. Demain and Julian
	7. Handbook of Downstream processing, Edin Goldberg,	Blackie a	nd Academ	nic Professional, 1997
Model	Short Type (At least 8), Long Type (At least 4) and MCQs	for Interr	nal Assessr	nent (At least 8)
Questions:	wherever applicable as the need of curriculum.			
	Short Type (At least 8):			
	1. Explain Structure of Bacteria.			
	2. Explain Structure of Virus.			
	A Define role of sterilization in microbial growth			
	5. Enlist the parts of fermenter			
	6. Add detailed note on antibiotics production (penicillir	1)		
	7. Add detailed note on vitamin(B12)	• /)		
	8. What is Probiotics?			
	9. Add note Nutritional and medicinal properties of mus	hroom		
	Long Type (At least 4):			
	1. Explain process of production of microbial biofertilize	rs		
	2. Write on Fundamental aspects probiotics and its heal	th benefit	S	
	3. Explain Production of single cell protein from bacteria			
	4. Describe Microbial production of therapeutically impo	ortant pro	ducts	
	MCQs for Internal Assessment (At least 8)			2
	1. Which of the following food products come from mici	robes in b	iotechnolo	ogy?
	A. Soy sauce			
	B. Cheese			
	C. Alconolic beverages			
	D. All die correct	o contain	usoful ant	igens?
	Δ Cell wall		uscrur and	
	B. Flagella			
	C. Ribosomes			
	D. Capsule			
	3. Which of the following contains structures composed	of N-acet	ylmuramio	c acid and N-
	acetylglucosamine?			
	A. Mycoplasmas			
	B. Amoeba			
	C. E.coli			
	D. Spheroplast			
	4. GMO stands for			

A. genetically manipulated organism
B. genetically modified organism
C. greatly modified organism
D. genetically manufactured organism
5. The structure of RNA differs from that of DNA, as RNA contains:
a) The sugar ribose instead of deoxyribose
b) uracil instead of thymine
c) it contain Cytosine
d) a and b
6. Bacterial ribosomes typically consist of two subunits, the larger (50 S) subunit consist of:
a) single RNA molecule (16 S) and 21polypeptides.
b) Two RNA molecules (30 S and 50 S) plus 31 different polypeptides.
c) single RNA molecule (18 S) and 21polypeptides
d) Two RNA molecules (23 S and 5 S) plus 31 different polypeptides
7. The E. coli chromosome is a closed-circular DNA of length 4.6 million base pairs, which
resides in a region of the cell called the:
a) nucleosome
b) nucleotide
c) nucleoid
d) DNA domains
8. Which of the following is not fermented product.
a) Antibiotic
b) Citric acid
c) Alcohol
d) Vaccine

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Course Titles) for the Three Year UG Degree of Bachelor of Botany (Three Years- Six Semesters Bachelor's Degree Programme)

Syllabus for : VSC : BIOINFORMATICS : TOOLS AND APPLICATIONS (106501)

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course Code	Course Name	Credits	Teaching Hours	Exam Duration	Max Marks
4.5	I	106501	BIOINFORMATICS : TOOLS AND APPLICATIONS	2	30	2 Hrs	30

Course	3. To learn about significance of Tools of Bioinformatics.								
Objectives:	4. To learn about applications of Bioinformatics.								
Course	As per Blooms Taxonomy (4 to 6)								
Outcomes:	CO-1: Students will be able to Recognize importance and applications of Bioinformatics								
	CO-2: Students will be able to Understand different tolls of bioinformatics.								
	CO-3: Students will apply knowledge to find out single nucleotide polymorphism								
	CO-4: Students will be able to categorize types of database								
	CO-5: students will be able to plan strategies of Sequence visualization and Structure Visualization.								
	CO-6: Students will be able to develop phylogenetic trees.								
Unit System	Contents	Workload Allotted (Hrs)	Weightage of Marks Allotted	Incorporation of Pedagogies					
Unit I	Introduction to Bioinformatics	8	8	•					
	1.1 Basics of computer structure, input and out								
	devices, memory devices, Internet – IP address,								
	TCP/IP, DNS, URL, and email								
	1.2 Bioinformatics definition, what is Bioinformatics								
	and its relation with molecular biology?								
	1.3 History, Aims, Scope and applications								
	1.4 Career in Bioinformatics and related field								
Unit II	Biological databases	7	7						
	2.1 DNA Databases – GenBank, EMBL, DDBJ,								
	understanding structure of DNA databases								
	2.2 Protein Databases – UniprotKB, Swiss Prot, TrEMBL								
	understanding structure these databases								
	2.3 Structure Databases – PBD and Understanding its								
	structure								
	2.4 Literature Databases – PubMed								
	Activities (Lab Work)								
	1. Biological Databases with Reference to Expasy and								
	NCBI								
	2. Exploration of the resources available in NCBI and PUBMED								
	3. Retrieval of a Genbank Entry using an accession								
	number								
Unit III	Sequence Alignments and Visualization	8	8						
	3.1 Introduction to Sequences, alignments and								
	Dynamic Programming;								
	3.2 Local alignment and Global alignment (algorithm								
	and example)								
	3.3 Pairwise alignment (BLAST and FASTA Algorithm)								
	and multiple sequence alignment (Clustal W								
	algorithm).								
	3.4 3D structure viewers (Rasmol, SPDBv, Chime,								
	Cn3D, PyMol), Anatomical visualization.								
	Activities (Lab Work)								

ClostatW ClostatW ClostatW 2. Pair-wise and multiple sequence alignment using BLAST 2. Pair-wise and ysis of a protein 4. Secondary structure analysis of a protein 4. Secondary structure analysis of a protein 5. Certical and analysis of a grotein 5. Certical and analysis of a grotein 6. Retrieval and analysis of a grotein 7 7 4.1 Sequence visualization & Computational Genomiss 7 7 4.1 Sequence visualization & Computational Genomiss 7 7 4.2 Swiss PDB: Viewer , Webriol , Rasmol , Chime, MCUMOL , CR30, MdScript , Phymol. 7 7 4.3 Computational Genomics , Computational Proteomics, Drug discovery. 7 7 7. Phylogenetics and NdScript , Phymol. 7 7 7. Phylogenetics and NdScript , Phymol. 7 7 7. Phylogenetics analysis - MEGA, PAUP, PHYLP 7 7 8. Cheminformatics. 200 Errores and Genome Analysis by Mount D., Cold Spring Harber Laboratory Pros. New York. 2004 7 9. Bioinformatics - A Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Duelletter, B.F., Wiley Inda Prot Ltd. 2005 7 9. Conversion of Gene Sequence into its Corresponding Anito Acid Sequence and Michael L. Raymer, fundamental concepts of bioinformatics , pearson Education(low priced		1. Pair-wise and multiple sequence alignment using						
2. Pair-swise and multiple sequence alignment using BLAST Image: Subsect Structure analysis of a protein 4.Secondary structure analysis of a protein 4.Secondary structure analysis using RAMOL 5. Retrieval and analysis of a gene sequence 7.27508211 r ATS format Image: Structure analysis using RAMOL 5. Retrieval and analysis of a gene sequence 7.27 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		ClustalW						
References 1. Bioinformatics: Sequence analysis of grotein 4. Secondary structure analysis of a protein 7 5. Tertiary protein structure analysis using RASMOL 7 6. Retrieval and analysis of a grotein 7 7 7 4.1 Sequence visualization and Structure Visualization tools: General Overlew of Map Viewer, ORF Finder, Locus link. 7 7 4.1 Sequence Visualization and Structure Visualization tools: General Overlew of Map Viewer, ORF Finder, Locus link. 7 7 4.3 Computational Genomics, Computational Article Viewer, Webmol , Rasmol , Chime, MOIMOL (cn30, MdScript, Phymol. 7 7 4.4 Molecular Phylogenetics and Molecular Evolution- Terminology, Bio datamining , Pharmaco genomics & Cheminformatics: Sequence into its Corresponding 7 7 Activities (Lab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMoiff 2. Phylogenetic analysis - MEGA, PAUP, PHYLIP 3. Obstrommatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, Nev York, 2004 3. Introduction to bioinformatics by Teress K. Attwood, David J. Parry-Smith, Pearson Education, 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics , pearson Education(Jow priced Edition) 2. Overlex Site Attwood, David J. Parry-Smith, Pearson Education, 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics a practical Site Informa		2. Pair-wise and multiple sequence alignment using						
3. Primary structure analysis of a protein 4. Secondary structure analysis of a protein 5. Tertiary protein structure analysis using RASMOL 6. Retrieval and analysis of a gene sequence 7. 7 7 <td< th=""><th></th><th>BLAST</th><th></th><th></th><th></th></td<>		BLAST						
4. Secondary structure analysis of a protein S. Fetrieral and analysis of a protein S. Fetrieral and analysis of a gene sequence (AR3/S022' in FASTA format Unit W Sequence visualization & Computational Genomics (ASSTACE' in FASTA format 7 4.1 Sequence visualization & Computational Genomics (ASSTACE') in FASTA format 7 4.3 Sequence visualization (Computational Genomics) (ASSTACE') in FASTA format 7 4.3 Secure visualization (Computational Genomics) (ASSTACE') in FASTA format 7 4.4 Molecular Phylogenetics and Molecular Evolution- Terminology, Bio datamining , Pharmaco genomics & Cheminformatics. 7 At Molecular Phylogenetics and Molecular Evolution- Terminology, Bio datamining , Pharmaco genomics & Chemino Add Sequence 7 References: 1. BioInformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York, 2004 2. Bioinformatics a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellent, B.F., Wiley India Part 1d: 2009 3. Introduction to bioInformatics by Teresa K. Attwood, David J. Parry-Smith, Pearson Education, 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioInformatics , pearson Education(Jow priced Edition) 4. Deriver Applicable as the need of carticulum. Short Type (At least 8); One Type (At least 8); Dam Type (At least 4); Dam Type (At least 4		3. Primary structure analysis of a protein						
S. Tertiary protein structure analysis using RASMOL Intrivel and analysis of a gene sequence VINITV Sequence visualization al Computational Genomics 7 J. Sequence visualization al Structure Visualization tools: General Overview of Map viewer, ORF Finder , Locus link. 7 4.2. Swiss PDB Viewer , Webmol , Rasmol ,Chime, MOIMOL ,Ch3D, MolScript, Phymol. 7 4.3. Computational Genomics, Computational Proteomics, Drug discovery. 4.4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Chemilatormatics. Activities (Jab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 9. Sonewersion of Gene Sequence into its Corresponding Amino Acid Sequence and Cenome Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry Smith. Pearson Education. 1999 4. Devine and Michael L Raymer, fundamental concepts of bioinformatics , pearson Education. 1999 4. Obert Type (A Least 3). Long Type (A Least 4) and MCOs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (A Least 3). Long Type (A Least 4) and MCOs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (A Least 3). Long Type (A Least 4) and MCOs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (A Least 3). Long Type (A Least 4) and MCOs for Internal Assessment (At least 8)		4.Secondary structure analysis of a protein						
B. Retireval and analysis of a gerie sequence All Unit IV Sequence visualization and Structure Visualization 7 7 A.1 Sequence visualization and Structure Visualization 7 7 A.2 Swiss PDB Viewer , Webmol , Rasmol , Chime, MOLMOL, ChaD, MolScript, Phymol. 7 7 A.3 Computational Genomics, Computational Proteomics, Paremicology, Bio datamining , Pharmaco genomics & Cheminiformatics. 7 7 A.4 Molecular Phylogenetic sand Molecular Evolution-Terminology, Bio datamining , Pharmaco genomics & Cheminiformatics. 7 7 A.4 Molecular Phylogenetic analysis - MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence 7 References: 1. Bioinformatics: Sequence and Genome Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Outellotter, B.F., Wiley India PVI ttd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry Smith. Pearson Education. 1999 A. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics .pearson Education. 1999 5. Claveria B.30 (Chime), Type (At least 4) and MCDs for internal Assessment (At least 8) Model Question 5. Claveria B.30 (Chimer, Tordamental concepts of bioinformatics .pearson Education. 1999 A. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics .pearson Education. 1999 5. Claveria B.30 (Chi		5. Tertiary protein structure analysis using RASMOL						
47373027 in rASTA format 7 Unit IV Sequence visualization and Structure Visualization tools: General Dverview of Map viewer, ORF Finder , Locus link. 7 4.1 Sequence visualization tools: Ceneral Dverview of Map viewer, ORF Finder , Locus link. 7 4.2 Swits PDB Viewer , Webmol , Rasmol ,Chime, MOI MOI ,Ch3D, MolScript, Phymol. 7 4.3 Computational Genomics, Computational Proteomics, Drug discovery. 4 4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Cheminformatics. 1 Activities (Lab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Occurstion of Gene Sequence into its Corresponding Amino Acid Sequence Reference: 1. BioInformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ourellette, B.F., Wiley India PVL Lid. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics , pearson Education(low priced Fdition) 5. Claverie & Nortedame, Bioinformatics. 2. Write dawn the aim and scope of Bioinformatics. 9. Write dawn the aim and scope of Bioinformatics. 3. Write dawn the aim and scope of Bioinformatics. 9. Write dawn the aim and scope of Bioinformatics. <t< th=""><th></th><th>6. Retrieval and analysis of a gene sequence</th><th></th><th></th><th></th></t<>		6. Retrieval and analysis of a gene sequence						
Unit IV Sequence visualization & Computational Genomics 7 4.1 Sequence visualization and Structure Visualization tools: General Overview of Map Viewer, ORF Finder , Locus link. 7 4.2 Swiss PDB Viewer , Webmol , Rasmol , Chime, MOLMOL, Cn3D, MolScript, Phymol. 7 4.3 Computational Genomics, Computational Proteomics, Drug discovery. 4.4 Molecular Phylogenetics and Molecular Evolution:- Terminology, Bio-datamining , Pharmaco genomics & Chemiinformatics. Activities (Lab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3.Conversion of Gene Sequence into its Corresponding References: 1. Bioinformatics: Sequence and Genome Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India PvL Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics , pearson Education/low priced Edition) 5. Claverie & Notredame, Bioinformatics. 2 9. Write down the aim and scope of Bioinformatics. 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics. 3. Write note on CBMB. 4. Define uses of DDDB 5. Finist the Applications of genomics. 6. Add detailed note on MOLMOL		"AF375082" in FASTA format						
4.1 Sequence visualization and Structure Visualization tools: General Overview of Map viewer, ORF Finder , Locus link. 4.2 Swiss PDB Viewer , Webmol , Rasmol , Chime, MOLMOL , Cn3D, Mollscript, Phymol. 4.3 Computational Proteomics, Drug discovery. 4.4 Molecular Phylogenetics and Molecular Evolution:: Terminology, Bio datamining , Pharmaco genomics & Chemilinformatics. Activities (Jab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Onversion of Gene Sequence into its Corresponding Amino Acid Sequence Activities (Lab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: Sequence and Genome Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ourellettes, B.F., Wiley India Ptv Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics , pearson Education(Jow priced Edition) 5. Claverie & Nortedame, Bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on tools of bioinformatics. 3. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses 1-of Dabases with special reference to PDB 5. Enlist the App	Unit IV	Sequence visualization & Computational Genomics	7	7				
took: General Overview of Map viewer, ORF Finder , Locus link. Locus link. 42. Swiss PDB: Viewer , Webmol , Rasmol , Chime, MOLMOL, CA3D, MolScript, Phymol. Link 43. Computational Genomics, Computational Proteomics, Drug discovery. Computational Genomics, Computational Proteomics, Drug discovery. 44. Molecular Phylogenetics and Molecular Evolution:- Terminology, Bio-datamining , Pharmaco genomics & Cheminformatics. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3.Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 Bioinformatics: Sequence and Genome Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouelleliette, B.F., Wiley India PVL Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics , pearson Education(Row priced Edition) 5. Claverie & Notredame, Bioinformatics - A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Owner to tools of bioinformatics. Questional 5. Enlist the Applications of genomics. 6. Add detailed note on NOLMOL 7. Explain Concept of Chemilinformatics. 9. Write rote on EMBL 1. Define uses of DDBJ 9. Enlist the Applications of genomics. 6. Add detailed no		4.1 Sequence visualization and Structure Visualization	-					
Locus link. 4.2 Swiss PDB Viewer , Webmol , Rasmal , Chime, MUMOL (.Ch30, MolScript, Phymol. 4.3 Computational Genomics, Computational Proteomics, Drug discovery. 4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Cheminformatics. Activities (Lab Work) 1. Protein misch and Kanaka and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Cheminformatics. Activities (Lab Work) 1. Protein most provide analysis : a. MEME/MAST b. eMotif DeMotif 2. Phylogenetic analysis - MEGA, PAUP, PHYLP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt ttd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L Raymer, fundamental concepts of bioinformatics .pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics. A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At Least 8): Write note on EMBL Define uses of DBB 3. Write down the aim and scope of Bioinformatics. Swite Applications of genomics. 3. Add dote and Michael L RASTA & FASTA		tools: General Overview of Map viewer, ORF Finder ,						
4.2 Suiss PDB Viewer , Webmol , Rasmol , Chime, MOLMOL, Cn3D, MolScript, Phymol. 4.3 Computational Genomics, Computational Proteomics, Drug discovery, 4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Chemilinformatics. Activities (Ldw Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Cuellellette, B.F., Wiley Indla PVL ttd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics , pearson Education(Iow priced Edition) 5. Claverie & Notredame, Bioinformatics - A Beginners Guide, Wiley-Dreamtech India PVL TD, 2003 Model Wherever applicable as the need of curriculum. Short Type (Atleast 8); eng Type (Atleast 4) and MCGs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (Atleast 8); Netted and multiple sequence alignment using ClustalW 2. Write down the aim and scope of Bioinformatics . . Add note on ORF Ender 1. Define us		Locus link.						
MOLMOL_Cn3D, MolScript, Phymol. 4.3 Computational Genomics, Computational Proteomics, Drug discovery. 4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Cheminformatics. Activities (Jab Work) 1. 1. Protein molarity and the main analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: Sequence into its Corresponding Amino Acid Sequence 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics. 4. Dari E Krane and Michael L Raymer, fundamental concepts of bioinformatics aperatorial wherever applicable as the need of curriculum. Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) Questions: Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8)		4.2 Swiss PDB Viewer, Webmol, Rasmol, Chime,						
4.3 Computational Proteomics, Drug discovery. 4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Cheminiformatics. Activities (Lab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: Sequence and Genome Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics , pearson Education(low priced Edition) 5. Claveric & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Short Type (At least 8). Wherever applicable as the need of curriculum. Short Type (At least 8). Wherever applicable as the need of Bioinformatics. 2. Write down the aim and scope of Bioinformatics. 3. Write note on EMBL 4. Define uses of DDB3 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOU 7. Explain Concept of Cheminformatics 8. Add note on ORF Finder Long Type (At least 4):		MOLMOL ,Cn3D, MolScript, Phymol.						
Proteomics, Drug discovery, 4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining, Pharmaco genomics & Cheminformatics. Activities (Lab Work) 1. Protein mobif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Arrino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley india Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics pearson Education(low priced Edition) 5. Claverie & N. Notredame, Bioinformatics. 9. Write down the aim and scope of Bioinformatics 9. Write down the aim and scope of Bioinformatics 9. Write note on MOSI of Dibinformatics 9. Write note on MOLMOL 9. Explain Concept of Cheminformatics 9. Write note on MOLMOL 9. Explain Concept of Cheminformatics 9. Write note on MOLMOL 9. Explain Prair-wise and multiple sequence alignment using ClustalW 9. Differentiate betwe		4.3 Computational Genomics, Computational						
4.4 Molecular Phylogenetics and Molecular Evolution: Terminology, Bio-datamining , Pharmaco genomics & Cheminioformatics. Activities (Jab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Oueliellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics. A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8); 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write not eon ORF Einder Long Type (At least 4): 1. Explain Concept of Cheminformatics 3. Add note on ORF Finder Long Type (At least 4): 1. Explain Concept of Cheminformatics 3. Add note on ORF Finder Long Type (At least 4): 2. Explain the uses i		Proteomics, Drug discovery.						
Terminology, Bio-datamining , Pharmaco genomics & Cheminformatics. Activities (LBW Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India PVL 1td. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics. A Beginners Guide, Wiley-Dreamtech India PVLTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) Wherever applicable as the need of curriculum. Short Type (At least 8) Wherever applicable as the need of curriculum. Short Type (At least 8) 1. Write note on EMBI. 4. Define uses of DDBI 5. Enlist the Applications of genomi		4.4 Molecular Phylogenetics and Molecular Evolution:-						
Chemiinformatics. Activities (Lab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India PVL tLd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics, pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India PVL LTD, 2003 Model Questions: 9. Wherever applicable as the need of curriculum. 9. In Virte down the aim and scope of Bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on DBMI 4. Define uses of DDBI 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Pair wise and multiple sequence alignment using ClustalW 9. Differentitate between : BLASTA & FASTA <		Terminology, Bio-datamining , Pharmaco genomics &						
Activities (Lab Work) 1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics, pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinfomatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Questions: Short Type (At least 8). Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8). Short Type (At least 4): 1. Write note on ToMBI. 4. Define uses of DDBI 5. Enlist the Applications of genomics. 6. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between: BLASTA & F		Chemiinformatics.						
1. Protein motif and domain analysis: a. MEME/MAST b. eMotif 2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3. Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellelte, B.F., Wiley India PVL tot. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics ,pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India PVL ITD, 2003 Model Questions: Wherever applicable as the need of curriculum. Short Type (At least 8). 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on CMBL 4. Define uses of DDBI 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Pair-wise and multiple sequence alignment using ClustalW		Activities (Lab Work)						
b. e.Motifi 2. Phylogenetic analysis – MEGA, PAUP, PHYLP 3. Conversion of Gene Sequence into its Corresponding anino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics. a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouelieliette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics , pearson Education (low priced Edition) 5. Claverie & Notredame, Bioinfomatics - A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8); tong Type (At least 4) and MCQs for internal Assessment (At least 8) Wherever applicable as the need of curriculum. Short Type (At least 8): Short Type (At least 8): 1. Write note on tools of Bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between: ELASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At		1. Protein motif and domain analysis: a. MEME/MAST						
2. Phylogenetic analysis – MEGA, PAUP, PHYLIP 3.Conversion of Gene Sequence into its Corresponding Amino Acid Sequence 8eferences: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics- a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics, pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Questions: Wherever applicable as the need of curriculum. Short Type (At least 8). 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on MOLMOL 7. Explain Concept of Cheminformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses iof Databases with special reference to PDB		b. eMotif						
3.Conversion of Gene Sequence into its Corresponding Amino Acid Sequence References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouelleltette, B.F., Wiley India PVL Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics , pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinfomatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8); 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain The uses inof Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST. (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1985		2. Phylogenetic analysis – MEGA, PAUP, PHYLIP						
Amino Acid Sequence Image: Content of the sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics , pearson Education 2. Claverie & Notredame, Bioinformatics - A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8). Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8): 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Cheminformatics 8. Add note on ORF Finder Long Type (At least 8) 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool?		3.Conversion of Gene Sequence into its Corresponding						
References: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 Press, New York. 2004 2. Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics, pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Questions: Short Type (At least 8). 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBI 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between: BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool?		Amino Acid Sequence						
Press, New York. 2004 2. Bioinformatics - a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Coulelleltet, B.F., Wiley India PVt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E. Krane and Michael L. Raymer, fundamental concepts of bioinformatics ,pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India PVt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8); Nvite note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics write note on EMBL 4. Define uses of DDBI Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between: BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RASMOI (c) FIMBOSS (d) PROSPECT Sol:(a) BLAS	References:	1. Bioinformatics: Sequence and Genome Analysis by	Mount D	., Cold Spr	ing Harbor Laboratory			
 2. Bioinformatics- a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics ,pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Questions: Morever applicable as the need of curriculum. Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8): Write note on tools of bioinformatics. Write note on tools of bioinformatics. Write note on tools of bioinformatics. Write note on tools of genomics. Add detailed note on MOLMOL Explain the Applications of genomics. Add note on ORF Finder Long Type (At least 4): Explain Pair-wise and multiple sequence alignment using ClustalW Differentiate between : BLASTA & FASTA Explain Pair-wise iof Databases with special reference to PDB Describe Bio-datamining. MCQs for Internal Assessment (At least 8) Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Solici (a) BLAST. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		Press, New York. 2004						
Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009 3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics ,pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) Questions: wherever applicable as the need of curriculum. Short Type (At least 8): Nitte note on tools of bioinformatics. 2. Write note on tools of bioinformatics. Wite worm the aim and scope of Bioinformatics 3. write note on EMBL Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. I		2. Bioinformatics- a Practical Guide to the Analysis of C	Genes and	d Proteins	by Baxevanis, A.D. and			
3. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics ,pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinformatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8): 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between: BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequ		Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009						
1999 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics ,pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinfomatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) Questions: Wherever applicable as the need of curriculum. Short Type (At least 8): 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 <		3. Introduction to bioinformatics by Teresa K. Attwood	l, David J.	Parry-Smi	th. Pearson Education.			
 4. Dan E Krane and Michael L Raymer, fundamental concepts of bioinformatics ,pearson Education(low priced Edition) 5. Claverie & Notredame, Bioinfomatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8): 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on tMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add note on MOLMOL 7. Explain Concept of Chemilinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		1999						
Education(low priced Edition) 5. Claverie & Notredame, Bioinfomatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) Questions: wherever applicable as the need of curriculum. Short Type (At least 8): 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 1985		4. Dan E Krane and Michael L Raymer, fundamen	ntal conce	epts of b	ioinformatics ,pearson			
5. Claverie & Notredame, Bioinfomatics- A Beginners Guide, Wiley-Dreamtech India Pvt LTD, 2003 Model Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) Questions: Wherever applicable as the need of curriculum. Short Type (At least 8): 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) BaSMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 (b) 1985		Education(low priced Edition)						
Model Questions: Short Type (At least 8), Long Type (At least 4) and MCQs for Internal Assessment (At least 8) wherever applicable as the need of curriculum. Short Type (At least 8): . Short Type (At least 8): . Write note on tools of bioinformatics. . Write note on EMBL . 4. Define uses of DDBJ . 5. Enlist the Applications of genomics. . 6. Add detailed note on MOLMOL . 7. Explain Concept of Chemiinformatics . 8. Add note on ORF Finder . Long Type (At least 4): . 1. Explain Pair-wise and multiple sequence alignment using ClustalW . 2. Differentiate between : BLASTA & FASTA . 3. Explain the uses i=of Databases with special reference to PDB . 4. Describe Bio-datamining. . MCQs for Internal Assessment (At least 8) . 1. Which of the following is an example of Homology and similarity tool? (a) BLAST . (b) RasMol . (c) EMBOSS . (d) PROSPECT . Sol:(a) BLAST. . 2. In w		5. Claverie & Notredame, Bioinfomatics- A Beginners Gu	iide, Wiley	/-Dreamte	ch India Pvt LTD, 2003			
Questions: wherever applicable as the need of curriculum. Short Type (At least 8): 1. Write note on tools of bioinformatics. 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder 10. Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 1985	Model	Short Type (At least 8), Long Type (At least 4) and MCQs	for Interr	hal Assessr	nent (At least 8)			
Short Type (At least 8): Write note on tools of bioinformatics. Write note on EMBL Define uses of DDBJ Enlist the Applications of genomics. Add detailed note on MOLMOL Explain Concept of Chemiinformatics Add note on ORF Finder Long Type (At least 4): Explain Pair-wise and multiple sequence alignment using ClustalW Differentiate between : BLASTA & FASTA Explain the uses i=of Databases with special reference to PDB Describe Bio-datamining. MCQs for Internal Assessment (At least 8) Which of the following is an example of Homology and similarity tool? BLAST RasMol EMBOSS PROSPECT Sol:(a) BLAST. In which year did the SWISSPROT protein sequence database begin? 1988 1985 	Questions:	wherever applicable as the need of curriculum.						
 Write note on tools of bioinformatics. Write down the aim and scope of Bioinformatics write note on EMBL Define uses of DDBJ Enlist the Applications of genomics. Add detailed note on MOLMOL Explain Concept of Chemiinformatics Add note on ORF Finder Long Type (At least 4): Explain Pair-wise and multiple sequence alignment using ClustalW Differentiate between : BLASTA & FASTA Explain the uses i=of Databases with special reference to PDB Describe Bio-datamining. MCQs for Internal Assessment (At least 8) Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		Short Type (At least 8):						
 2. Write down the aim and scope of Bioinformatics 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Cheminformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		1. Write note on tools of bioinformatics.						
 3. write note on EMBL 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		2. Write down the aim and scope of Bioinformatics						
 4. Define uses of DDBJ 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		3. write note on EMBL						
 5. Enlist the Applications of genomics. 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): Explain Pair-wise and multiple sequence alignment using ClustalW Differentiate between : BLASTA & FASTA Explain the uses i=of Databases with special reference to PDB Describe Bio-datamining. MCQs for Internal Assessment (At least 8) Which of the following is an example of Homology and similarity tool? BLAST RaSMol EMBOSS PROSPECT Sol:(a) BLAST. In which year did the SWISSPROT protein sequence database begin? 1988 1985 		4. Define uses of DDBJ						
 6. Add detailed note on MOLMOL 7. Explain Concept of Chemiinformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		5. Enlist the Applications of genomics.						
 7. Explain Concept of Cheminformatics 8. Add note on ORF Finder Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		6. Add detailed note on MOLMOL						
 8. Add note on ORF Finder Long Type (At least 4): Explain Pair-wise and multiple sequence alignment using ClustalW Differentiate between : BLASTA & FASTA Explain the uses i=of Databases with special reference to PDB Describe Bio-datamining. MCQs for Internal Assessment (At least 8) Which of the following is an example of Homology and similarity tool? BLAST RasMol EMBOSS PROSPECT Sol:(a) BLAST. In which year did the SWISSPROT protein sequence database begin? 1988 1985 		7. Explain Concept of Chemiinformatics						
 Long Type (At least 4): 1. Explain Pair-wise and multiple sequence alignment using ClustalW 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		8. Add note on ORF Finder						
 Explain Pair-Wise and multiple sequence alignment using ClustalW Differentiate between : BLASTA & FASTA Explain the uses i=of Databases with special reference to PDB Describe Bio-datamining. MCQs for Internal Assessment (At least 8) Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		Long Type (At least 4):	·	1				
 2. Differentiate between : BLASTA & FASTA 3. Explain the uses i=of Databases with special reference to PDB 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		1. Explain Pair-wise and multiple sequence alignment us	sing Clusta	alvv				
 4. Describe Bio-datamining. MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		2. Differentiate between : BLASTA & FASTA						
 MCQs for Internal Assessment (At least 8) 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		3. Explain the uses i=of Databases with special reference to PDB						
 1. Which of the following is an example of Homology and similarity tool? (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		4. Describe Bio-datamining.						
 (a) BLAST (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		MCQs for Internal Assessment (At least 8)						
 (b) RasMol (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		(a) BLAST	u siiriiidiil	y 1001!				
 (c) EMBOSS (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		(b) BasMol						
 (d) PROSPECT Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985 		(c) FMBOSS						
Sol:(a) BLAST. 2. In which year did the SWISSPROT protein sequence database begin? (a) 1988 (b) 1985		(d) PROSPECT						
2. In which year did the SWISSPROT protein sequence database begin?(a) 1988(b) 1985		Sol·(a) BLAST						
2. In which year did the SWISSPROT protein sequence database begin?(a) 1988(b) 1985								
(a) 1988 (b) 1985		2. In which year did the SWISSPROT protein sequence da	atabase h	egin?				
(b) 1985	1	2. In which year did the SWISSPROT protein sequence database begin?						
		(a) 1988 (b) 1985						
(c) 1986		(a) 1988 (b) 1985						

(d) 1987 Sol:(d) 1987.
3. Which of the following scientists created the first Bioinformatics database?
(b) Pearson
(c) Richard Durbin
(d) Michael.J.Dunn
Sol:(a) Dayhoff.
1 The human genome contains approximately
(a) 6 billion base pairs
(b) 5 billion base pairs
(c) 3 billion base pairs
(d) 4 billion base pairs
Sol: (c) 3 billion base pairs.
5. Which of the following tools is used for the identification of motifs?
(a) BLAST
(b) COPIA
(c) PROSPECT
(d) Pattern hunter Sol: (b) COPIA
6. The first molecular biology server expasy was in the year
(a) 1992 (b) 1993
(b) 1994
(d) 1995
Sol: (b) 1993.
7 What is the deposition of cDNA into the inert structure called?
(a) DNA probes
(b) DNA polymerase
(c) DNA microarrays
(d) DNA fingerprinting
Sol: (c) DNA microarrays.
8. The identification of drugs through the genomic study is called
(a) Genomics
(b) Pharmacogenomics
(d) Cheminformatics
Sol: (b) Pharmacogenomics.
9. which of the following are not the application of bioinformatics?
(b) Data storage and management
(c) Understand the relationships between organisms
(d) None of the above
Sol: (d) None of the above.
10. Proteomics refers to the study of
(a) Set of proteins in a specific region of the cell
(b) Biomolecules
(c) Set of proteins
(d) The entire set of expressed proteins in the cell
Sol: (d) The entire set of expressed proteins in the cell.
11. The process of finding the relative location of genes on a chromosome is called
(a) Gene tracking
(b) Genome walking
(c) Genome mapping
(d) Unromosome walking

Sol:(c) Genome mapping.
 12. The computational methodology that tries to find the best matching between two molecules, a receptor and ligand are called (a) Molecular fitting (b) Molecular matching (c) Molecular docking (d) Molecule affinity checking Sol: (c) Molecular docking.

Sant Gadge Baba Amravati University FACULTY: Science and Technology Teaching and Learning Scheme (Fundamentals in Immunology and Molecular Biology) for the Three Year UG Degree of Bachelor of Biotechnology (Three Years- Six Semesters Bachelor's Degree Programme)

Course Template for Theory Curriculum: Developmental Biology

Each theory paper of **Theory shall be of 2 Credits comprising of 4 Units with Teaching Hours** as mentioned in the table. The pattern of theory papers shall be as per following template –

Level	Semester	Course	Course Name	Credits	Teaching	Exam	Max
		Code			Hours	Duration	Marks
4.5	I	106402	Developmental Biology	2	30	2 Hrs	30

Course	CO 1. The objective of this course is to provide a comprehensive understanding of						
Objective	the concepts of early animal development.						
s:	CO 2 Students taking this course must develop a critical						
	appreciation of methodologies specifically used to study the process of embryonic						
	development in animals.						
Course	On the successful completion of the course, stu	dents wi	ll be able	to-			
Outcomes	• Explain the molecular and genetic backgroun	d of ani	mal deve	lopment.			
:	• Describe evolutionary history of complex mu	lticellula	ar life for	ms;			
	• Compare environmental influence on develop	ment an	d homeos	stasis of animals.			
	• Interpret, analyse and present experimental re	sults and	d conclus	ions in a scientific			
	manner.						
	Contents Workloa Weightag Incorporation of						
Unit	Contents	Workloa	Weightag	Incorporation of			
Unit Svstem	Contents	Workloa d Allotted	Weightag e of Marks	Incorporation of Pedagogies			
Unit System	Contents	Workloa d Allotted (Hrs)	Weightag e of Marks Allotted	Incorporation of Pedagogies			
Unit System Unit I	Contents Gametogenesis and Fertilization	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies both classical			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective of development Biology	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies, both classical and contemporary			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective of development Biology 1.2 Gametogenesis – Spormatogenesis	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies, both classical and contemporary innovations, for			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective of development Biology 1.2 Gametogenesis –Spermatogenesis,	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies, both classical and contemporary innovations, for integration into the Teaching Learning and			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective of development Biology 1.2 Gametogenesis –Spermatogenesis, Oogenesis	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies, both classical and contemporary innovations, for integration into the Teaching, Learning, and Evaluation (T. L. & E)			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective of development Biology 1.2 Gametogenesis –Spermatogenesis, Oogenesis	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies, both classical and contemporary innovations, for integration into the Teaching, Learning, and Evaluation (T, L, & E) Processes. These			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective of development Biology 1.2 Gametogenesis –Spermatogenesis, Oogenesis 1.3 Fertilization - Definition, mechanism,	Workloa d Allotted (Hrs) 8	Weightag e of Marks <u>Allotted</u> 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies, both classical and contemporary innovations, for integration into the Teaching, Learning, and Evaluation (T, L, & E) Processes. These strategies should be			
Unit System Unit I	Contents Gametogenesis and Fertilization 1.1 Definition, scope & historical perspective of development Biology 1.2 Gametogenesis –Spermatogenesis, Oogenesis 1.3 Fertilization - Definition, mechanism, types of fertilization.	Workloa d Allotted (Hrs) 8	Weightag e of Marks Allotted 8	Incorporation of Pedagogies BoS shall recommend suitable pedagogical strategies, both classical and contemporary innovations, for integration into the Teaching, Learning, and Evaluation (T, L, & E) Processes. These strategies should be tailored to enhance the delivery and			

	1.4 Different types of eggs on the basis of yolk	-		comprehension of the course content within each Unit, ensuring that they align with the		
Unit II	Farly embryonic development	7	7	educational objectives		
	2.1 Cleavage: Definition types patterns &			and learning outcomes.		
	mechanism .					
	2.2 Blastulation: Process, types & mechanism					
	2.3 Gastrulation: Morphogenetic movements-					
	epiboly emboly extension invagination					
	convergence, de-lamination					
	2.4 Formation & differentiation of primary	-				
	germ layers, Fate Maps in					
	early embryos					
Unit III	Embryonic Differentiation	8	8			
	3.1 Differentiation: Cell commitment and					
	determination	_				
	3.2 The epigenetic landscape: a model of					
	determination and differentiation, control of					
	differentiation at the level of genome,					
	transcription and post-translation level	-				
	3.3 Concept of embryonic induction: Primary,					
	secondary &tertiary embryonic induction,	-				
	3.4. Neural induction and induction of					
	vertebrate lens.	-				
		7	7			
Unit IV	Organogenesis	- /	/			
	4.1 Neurulation, notogenesis, development of					
	vertebrate eye.	-				
	4.2 Fate of different primary germ layers.	-				
	4.3 Development of behaviour: constancy &					
	plasticity.	-				
	4.4 Extra embryonic membranes, placenta in					
	iviammais.	-				

References

- 1. Gilbert, S. F. (2010). Developmental Biology, IX Edition, Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA
- 2. Balinsky B. I. and Fabian B. C. (1981). An Introduction to Embryology, V Edition, International Thompson Computer Press

- 3. Carlson, R. F. Patten's Foundations of Embryology.
- 4. Kalthoff (2008). Analysis of Biological Development, II Edition, McGraw-Hill Publishers
- 5. Lewis Wolpert (2002). Principles of Development. II Edition, Oxford University Press